Research Article
Silvina Vanesa Kergaravat*
Silvina Vanesa Kergaravat*
Corresponding
Author
Laboratorio
de Sensores y Biosensores, Facultad de Bioquímica y Ciencias Biológicas,
Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
Consejo Nacional de Investigaciones Científicas y
Técnicas (CONICET), CCT Santa Fe, Argentina.
And
Consejo Nacional de Investigaciones Científicas y
Técnicas (CONICET), CCT Santa Fe, Argentina.
E-mail: skergaravat@fbcb.unl.edu.ar, vanesakergaravat@hotmail.com
Tel: +54 342 4575 206/209/215/216 (interno (0)187)
Fernanda Albana Marchesini
Fernanda Albana Marchesini
Silvia Raquel Hernández*
Silvia Raquel Hernández*
Corresponding
Author
Laboratorio
de Sensores y Biosensores, Facultad de Bioquímica y Ciencias Biológicas, Universidad
Nacional del Litoral, 3000 Santa Fe, Argentina.
E-mail: shernand@fbcb.unl.edu.ar
Received: 2025-04-01 | Revised:2025-08-14 | Accepted: 2025-08-14 | Published: 2025-12-17
Pages: 154-176
DOI: https://doi.org/10.58985/jesec.2025.v01i03.15
Abstract
A screening method for detecting the quinolone antibiotic family using an amperometric sensor was developed. The sensor was built by modifying a cylindrical graphite-epoxy composite (cGECE)-based electrode with Prussian Blue (PB). The PB-cGECE sensor was characterized by X-ray diffraction, optical microscopy, laser Raman microscopy, VIS and Fourier Transform Infrared (FTIR) spectroscopies, and cyclic voltammetry. As a result, the sensor exhibited excellent electrocatalytic behavior in the oxidation of quinolones compared to the bare graphite electrode. The electrochemical parameters, including electroactive surface coverage, the transfer coefficient, and the standard heterogeneous rate constant, were obtained from cyclic voltammograms. Calibration curves for seven quinolones were performed by amperometric detection on a PB-cGECE sensor with limits of detection of 3, 20, 30, 10, 45, 35, and 30 μg L-1 for ciprofloxacin, danofloxacin, enrofloxacin, marbofloxacin, norfloxacin, ofloxacin, and sarafloxacin, respectively. Ciprofloxacin was selected as a representative congener of the quinolone family in the screening evaluation of the water sample using a detection capability (CCβ) of 4.0 μg L-1 to classify samples as compliant or non-compliant. The method complies with Commission Implementing Regulation (EU) 2021/808 for screening techniques and also shows good precision, selectivity, and applicability in aqueous environmental matrices with a total analysis time of 5 min.
Keywords
Quinolone antibiotic, electrochemical detection, amperometry, Prussian blue, water.
References
Zhang, C.; Wang, H.; Mu, Y.; Liu, H. A method for simultaneously and accurately quantify seven quinolones in matrix reference materials by HPLC-MS. Microchem. J. 2024, 204, 110984. https://doi.org/10.1016/j.microc.2024.110984 | 1. |
Suryoprabowo, S.; Nasyiruddin, R.; Wang, Z.; Hendriko, A.; Tristanto, N. A comprehensive review on the pretreatment and detection methods of fluoroquinolones in food and environment. J. Food Comp. Anal. 2025, 140, 107179. https://doi.org/10.1016/j.jfca.2024.107179 | 2. |
Yusuf, F.; Ahmed, S.; Dy, D.; Baney, K.; Waseem, H.; Gilbride, K. Occurrence and characterization of plasmid-encoded qnr genes in quinolone-resistant bacteria across diverse aquatic environments in southern Ontario. Can. J. Microbiol. 2024, In Press, Corrected Proof. https://doi.org/10.1139/cjm-2024-0029 | 3. |
Hayes, A.; Murray, L.; Stanton, I.; Zhang, L.; Snape, J.; Gaze, W.; et al. Predicting selection for antimicrobial resistance in UK wastewater and aquatic environments: Ciprofloxacin poses a significant risk. Environ. Int. 2022, 169, 107488. https://doi.org/10.1016/j.envint.2022.107488 | 4. |
Pu, X.; Wang, X.; Liu, Y.; Di, X. A novel deep eutectic solvent-based ultrasound-assisted dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the determination of quinolones in environmental water samples. Microchem. J. 2023, 195, 109374. https://doi.org/10.1016/j.microc.2023.109374 | 5. |
Kheirandish, S.; Goudarzi, S.; Amirahmadi, M.; Ghareghani, S.; Ghafari, H.; Daraei, B.; et al. Method validation for simultaneous determination of macrolides, quinolones, and sulfonamides antibiotics in Iranian yogurt samples by SPE clean-up and UHPLC-MS/MS. Microchem. J. 2023, 193, 109103. https://doi.org/10.1016/j.microc.2023.109103 | 6. |
Pan, Y.; Yang, V.; Wen, K.; Ke, Y.; Shen, J.; Wang, Z. Current advances in immunoassays for quinolones in food and environmental samples. TrAC, Trends Anal. Chem. 2022, 157, 116726. https://doi.org/10.1016/j.trac.2022.116726. | 7. |
Moreno-González, D.; Hamed, A.; Gilbert-López, B.; Gámiz-Gracia, L.; García-Campaña, A. Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. J. Chromatogr. A 2017, 1510, 100-107. https://doi.org/10.1016/j.chroma.2017.06.055 | 8. |
Zhang, S.; Yu, S.; Wang, X.; Zhang, Y.; Yue, Z.; Li, C.; et al. An electrochemical sensor based on MnO2/ZnO composites for the detection of ciprofloxacin in honey. Microchem. J. 2023, 194, 109355. https://doi.org/10.1016/j.microc.2023.109355 | 9. |
Amine, A.; Mohammadi, H. Amperometry. Encyclopedia of Analytical Science (Third Edition) 2019, 85-98. https://doi.org/10.1016/B978-0-12-409547-2.14204-0 | 10. |
Koncki, R. Chemical sensors and biosensors based on prussian blues. Crit. Rev. Anal. Chem. 2002, 32(1), 79-96. https://doi.org/10.1080/10408340290765452 | 11. |
Ricci, F.; Palleschi, G. Sensor and biosensor preparation, optimisation and applications of prussian blue modified electrodes. Biosens. Bioelectron. 2005, 21(3), 389-407. https://doi.org/10.1016/j.bios.2004.12.001 | 12. |
Kjeldgaard, S.; Dugulan, I.; Mamakhel, A.; Wagemaker, M.; Iversen, B.; Bentien, A. Strategies for synthesis of Prussian blue analogues. R. Soc. Open Sci. 2021, 8(1), 201779. https://doi.org/10.1098/rsos.201779 | 13. |
Farah, A.; Billing, C.; Dikio, C.; Dibofori-Orji, A.; Oyedeji, O.; Wankasi, D.; et al. Synthesis of prussian blue and its electrochemical detection of hydrogen peroxide based on cetyltrimethylammonium bromide (CTAB) modified glassy carbon electrode. Int. J. Electrochem. Sci. 2013, 8(11), 12132 – 12146. https://doi.org/10.1016/S1452-3981(23)13250-0 | 14. |
Xing, Y.; Wu, G.; Ma, Y.; Yu, Y.; Yuan, X.; Zhu, X. Electrochemical detection of bisphenol B based on poly (Prussian blue)/carboxylated multiwalled carbon nanotubes composite modified electrode. Measurement. 2019, 148, 106940. https://doi.org/10.1016/j.measurement.2019.106940 | 15. |
Soares da Cruza, F.; de Souza Paula, F.; Leoni Franco, D.; Torres Pio dos Santos, W.; Franco Ferreira, L. Electrochemical detection of uric acid using graphite screen-printed electrodes modified with prussian blue/poly(4-aminosalicylic acid)/Uricase. J. Electroanal. Chem. 2017, 806, 172-179. https://doi:10.1016/j.jelechem.2017.10.070 | 16. |
Rocha, R.; Stefano, J.; Cardoso, R.; Zambiazi, P.; Bonacin, J.; Richter, E.; et al. Electrochemical synthesis of prussian blue from iron impurities in 3D printed graphene electrodes: Amperometric sensing platform for hydrogen peroxide. Talanta. 2020, 219, 121289. https://doi.org/10.1016/j.talanta.2020.121289 | 17. |
Chaves Carvalho, C.; de Andrade Rodrigues, G.; Lopes Magalhães, J.; Alves de Sousa Luz, R.; Santos Gerôncio da Silva, E.; Cantanhêde, W. Effect of Ibuprofen on the electrochemical properties of prussian blue/single-walled carbon nanotubes nanocomposite modified electrode. Surf. Interfaces. 2021, 25, 101276. https://doi.org/10.1016/j.surfin.2021.101276 | 18. |
Fotouhi, L.; Alahyari, M. Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloids Surf. B Biointerfaces. 2010, 81(1), 110-114. https://doi.org/10.1016/j.colsurfb.2010.06.030 | 19. |
Bard, A.; Faulkner, L.; White, H. Electrochemical methods, in: Fundamentals and Applications, 3rd Edition, Wiley, New York; 2022. | 20. |
Kergaravat, S.; Beltramino, L.; Garnero, N.; Trotta, L.; Wagener, M.; Pividori, M.; et al. Magneto inmunosensor electroquímico para la detección de anticuerpos anti-TG2 en la enfermedad celíaca. Biosens. Bioelectron. 2013, 48, 203-209. https://doi.org/10.1016/j.bios.2013.04.012 | 21. |
Pividori, M.; Lermo, A.; Zacco, E.; Hernández, S.; Fabiano, S.; Alegret, S. Bioaffinity platforms based on carbon-polymer biocomposites for electrochemical biosensing. Thin Solid Films. 2007, 516(2-4), 284–292. https://doi.org/10.1016/j.tsf.2007.06.063 | 22. |
Zacco, E.; Adrian, J.; Galve, R.; Marco, M..; Alegret, S.; Pividori, M. Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens. Bioelectron. 2007, 22(9-10), 2184-2191. https://doi.org/10.1016/j.bios.2006.10.014 | 23. |
Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101(1), 19-28. https://doi.org/10.1016/S0022-0728(79)80075-3 | 24. |
Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, Magnusson, B.; Örnemark, U. (Eds.), 2nd Ed., 2014. www.eurachem.org | 25. |
Raposo, F. Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: A tutorial review. TrAC-Trend Anal. Chem., 2016, 77, 167-185. https://doi.org/10.1016/j.trac.2015.12.006 | 26. |
Validation of Analytical Procedures Q2(R2). International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH Harmonised Guideline, EMA/CHMP/ICH/82072/2006, 2022. | 27. |
Commission Implementing Regulation (EU) 2021/808 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC. Off. J. Eur. Union. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:3; 2021. | 28. |
IRAM 29012-4. Calidad del medio ambiente. Calidad del agua. Muestreo. Parte 4: Directivas para el muestreo de aguas de lagos naturales y artificiales. https://www.iram.org.ar/busqueda-avanzada-de-normas-iram/; 1997. | 29. |
IRAM 29012-5. Calidad del medio ambiente. Calidad de agua. Muestreo. Parte 5: Guía sobre muestreo de agua potable y de aguas utilizadas para el procesamiento de alimentos y bebidas. https://www.iram.org.ar/busqueda-avanzada-de-normas-iram/; 1998. | 30. |
IRAM 29012-6 Calidad ambiental - Calidad del agua. Muestreo. Parte 6 - Directivas para el muestreo de ríos y arroyos. https://www.iram.org.ar/busqueda-avanzada-de-normas-iram/; 2019. | 31. |
IRAM 29012-11 Calidad ambiental. Calidad de agua - Muestreo. Parte 11: Directivas para el muestreo de aguas subterráneas. https://www.iram.org.ar/busqueda-avanzada-de-normas-iram/; 1999. | 32. |
da Silva, D.; Oliveira C. Development of micellar HPLC-UV Method for determination of pharmaceuticals in water samples. J. Anal. Methods Chem. 2018, 1471, 1-12. https://doi.org/10.1155/2018/9143730 | 33. |
Parma, M.; Beraldo, H.; de Castro Mendes, I. Syntheses of prussian blue pigment following 18th-century methodologies: Factors influencing product purity and syntheses yields. ACS Omega. 2025, 10, 11375-11385. https://doi.org/10.1021/acsomega.4c11328 | 34. |
Shiba, F.; Mameuda, U.; Tatejima, S.; Okawa, Y. Synthesis of uniform prussian blue nanoparticles by a polyol process using a polyethylene glycol aqueous solution. RSC Adv. 2019, 9, 34589- 34594. https://doi.org/10.1039/C9RA07080J | 35. |
Farah, A.; Shooto, N.; Thema, F.; Modise, J.; Dikio, E. Fabrication of prussian blue/multi-walled carbon nanotubes modified glassy carbon electrode for electrochemical detection of hydrogen peroxide. Int. J. Electrochem. Sci. 2012, 7, 4302-4313. https://doi.org/10.1016/S1452-3981(23)19539-3 | 36. |
Jadoun, S.; Arif, R.; Jangid, N.; Meena, R. Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett. 2021, 19, 355-374. https://doi.org/10.1007/s10311-020-01074-x | 37. |
Buser, H.; Ludi, A.; Schwarzenbach, D.; Petter, W. The crystal structure of prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg. Chem. 1977, 16(11), 2704-2710. https://doi.org/10.1021/ic50177a008 | 38. |
Baggio, B.; Vicente, C.; Pelegrini, S.; Cid, C.; Brandt, I.; Tumelero, M.; et al. Morphology and structure of electrodeposited prussian blue and prussian white thin films. Materials. 2019, 12(7), 1103. https://doi.org/10.3390/ma12071103 | 39. |
Wang, N.; Ma, W.; Du, Y.; Ren, Z.; Han, B.; Zhang, L.; et al. Prussian blue microcrystals with morphology evolution as high-performance photo-fenton catalyst for degradation of organic pollutants. ACS Appl. Mater. Interfaces. 2019, 11(1), 1174–1184. https://pubs.acs.org/doi/abs/10.1021/acsami.8b14987 | 40. |
Moretti, G.; Gervais, C. Raman spectroscopy of the photosensitive pigment Prussian blue. Raman Spectrosc. 2018, 49, 1198-1204. https://doi.org/10.1002/jrs.5366 | 41. |
Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; et al. A comprehensive review on raman spectroscopy applications. Chemosensors. 2021, 9(9), 262. https://doi.org/10.3390/chemosensors9090262 | 42. |
Dai, F.; Zhuang, Q.; Huang, G.; Deng, H.; Zhang, X. Infrared spectrum characteristics and quantification of OH groups in coal. ACS Omega. 2023, 8(19), 17064-17076. https://doi.org/10.1021/acsomega.3c01336 | 43. |
Rohilla, S.; Lal, B.; Sunder, S.; Aghamkar, P.; Kumar, S.; Aggarwal, A. synthesis of Fe4[Fe(CN)6]3·14H2O nanopowder by co-precipitation technique and effect of heat treatment. Acta Phys. Pol. A 2010, 118(4), 696-700. https://doi.org/10.12693/APhysPolA.118.696 | 44. |
Dumani, D.; Cook, J.; Kubelick, K.; Luci, J.; Emelianov S. Photomagnetic prussian blue nanocubes: synthesis, characterization, and biomedical applications. Nanomedicine. 2020, 24, 102138. https://doi.org/10.1016/j.nano.2019.102138 | 45. |
Giacomo Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool, Molecules. 2018, 23(6), 1414. https://doi.org/10.3390/molecules23061414 | 46. |
Ricci, F.; Moscone, D.; Palleschi, G. Procedure 17 preparation of prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors. Comprehensive Anal. Chem. 2007, 49, e119-e124. https://doi.org/10.1016/S0166-526X(06)49060-7 | 47. |
Lundgren, C.; Murray, R. Observations on the composition of prussian blue films and their electrochemistry. Inorg. Chem. 1988, 27 (5), 933-939. https://doi.org/10.1021/ic00278a036 | 48. |
Keggin, J., Miles, F. Structures and formulae of the prussian blues and related compounds. Nature. 1936, 137, 577–578. https://doi.org/10.1038/137577a0 | 49. |
Ellis, D.; Eckholf, M.; Neff, V. Electrochromism in the mixed-valence hexacyanides. 1. voltammetric and spectral studies of the oxidation and reduction of thin films of prussian blue. Phys. Chem. 1981, 85(9), 1225-1231. https://doi.org/10.1021/j150609a026 | 50. |
Itaya, K.; Ataka, T.; Toshima, S. Spectroelectrochemistry and electrochemical preparation method of prussian blue modified electrodes. J. Am. Chem. Soc. 1982, 104(18), 4767 – 4772. https://doi.org/10.1021/ja00382a006 | 51. |
Itaya, K.; Uchida, I.; Neff, V. Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 1986, 19(6), 162-168. https://doi.org/10.1021/ar00126a001 | 52. |
Cretu, R.; Gligor, D.; Muresan, L.; Popescu, I.; Muresan, L. Kinetic characterization of prussian blue-modified graphite electrodes for amperometric detection of hydrogen peroxide. J. Appl. Electrochem. 2006, 36(12) 1327-1332. https://doi.org/10.1007/s10800-006-9242-8 | 53. |
Ricci, F.; Amine, A.; Palleschi, G.; Moscone, D. Prussian blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens. Bioelectron. 2003, 18(2-3), 165-174. https://doi.org/10.1016/s0956-5663(02)00169-0 | 54. |
Wang J. Analytical Electrochemistry. Second Edition. Wiley-VHC. New York, EE.UU. 2011. | 55. |
Masood, Z.; Muhammad, H.; Tahiri, I. Comparison of different electrochemical methodologies for electrode reactions: A case study of paracetamol. Electrochem. 2024, 5, 57–69. https://doi.org/10.3390/Electrochem5010004 | 56. |
Adane, W.; Chandravanshi, B.; Tessema, M. A simple, ultrasensitive and cost-effective electrochemical sensor for the determination of ciprofloxacin in various types of samples. Sens. Bio-Sens. Res. 2023, 39, 100547. https://doi.org/10.1016/j.sbsr.2022.100547 | 57. |
Si, X.; Bai, C.; Gong, X.; Han, J.; Chen, Z.; Ding, Y. Detection of ofloxacin by differential pulse voltammetry in drugs based on a novel p-aminobenzene sulfonic acid/graphene electrochemical sensor. Int. J. Electrochem. Sci. 2020, 15, 8883–8891. https://doi.org/10.20964/2020.07.46 | 58. |
Jiwanti, P.; Sukardi, D.; Sari, A.; Tomisaki, M.; Wafiroh, S.; Hartati, S.; et al. Fabrication and characterization of rGO-SnO2 nanocomposite for electrochemical sensor of ciprofloxacin. Sens. Int. 2024, 5, 100276. https://doi.org/10.1016/j.sintl.2023.100276 | 59. |
Khasevani, S.; Nikjoo, D.; Ojwang, D.; Nodari, L.; Sarmad, S.; Mikkola, J.; et al. The beauty of being complex: Prussian blue analogues as selective catalysts and photocatalysts in the degradation of ciprofloxacin. J. Catal. 2022, 410, 307–319. https://doi.org/10.1016/j.jcat.2022.04.029 | 60. |
Carabineiro, S.; Thavorn-amornsri, T; Pereira, M.; Serp, P.; Figueiredo, J.; Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today. 2012, 186(1), 29-34. https://doi.org/10.1016/j.cattod.2011.08.020 | 61. |
Uivarosi, V. Metal complexes of quinolones antibiotics and their applications: An uptate. Molecules. 2013, 18, 11153-11197. https://doi.org/10.3390/molecules180911153 | 62. |
Hou, W.; Wang, E. Flow-injection amperometric detection of hydrazine by electrocatalytic oxidation at a Prussian Blue film-modified electrode. Anal. Chim. Acta. 1992, 257(2), 275-280. https://doi.org/10.1016/0003-2670(92)85180-E | 63. |
Ho, K.; Chen, C.; Hsu, H.; Chen, L.; Shiesh, S.; Lin, X. Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosens. Bioelectron. 2004, 20(1), 3-8. https://doi.org/10.1016/j.bios.2003.11.027 | 64. |
Rizk, M.; Belal, F.; Ibrahim, F.; Ahmed, S.; EL-Enany, N. Voltammetric analysis of certain 4-quinolones in pharmaceuticals and biological fluids. J. Pharmaceut. Biomed. 2000, 24(2), 211-218. https://doi.org/110.1016/s0731-7085(00)00401-5 | 65. |
Pellegrini, G.; Carpico, G.; Coni, E. Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk. Anal. Chim. Acta 2004, 520(1-2), 13-18. https://doi.org/10.1016/j.aca.2004.04.052 | 66. |
Zhang, F.; Gu, S.; Ding, Y.; Zhang, Z.; Li, L. A novel sensor based on electropolymerization of b-cyclodextrin and L-arginine on carbon paste electrode for determination of fluoroquinolones. Anal. Chim. Acta 2013, 770, 53–61. https://doi.org/10.1016/j.aca.2013.01.052 | 67. |
Shitahun, A.; Atlabachew, M.; Aragaw, B.; Benor, A.; Metto, M.; Abebe, A. Synthesis, characterization, and application of a novel electrochemical sensor based on poly [Mn(Chr)3]Cl2/PGE for the determination of ciprofloxacin in pharmaceuticals and urine samples. Int. J. Electrochem. Sci. 2025, 20, 100937. https://doi.org/10.1016/j.ijoes.2025.100937 | 68. |
Feng, X.; Wang, K.; Song, K.; Han, G.; Li, B.; Kraatz, H. Simultaneous detection of moxifloxacin and gatifloxacin by Cu-TCPP/rGO electrochemical sensor. 2024, 207, 112140. https://doi.org/10.1016/j.microc.2024.112140 | 69. |
Kassa, A.; Shitaw, D.; Bitew, Z.; Abebe, A. Eco-friendly electrochemical sensing: An ultra-sensitive voltametric analysis of ciprofloxacin in human serum, cow’s milk and pharmaceutical samples using a glassy carbon electrode modified with poly(Na2[Cu(HR)4]). Sens. Bio-Sens. Res. 2025, 49, 100825. https://doi.org/10.1016/j.sbsr.2025.100825 | 70. |
AOAC, Guidelines for standard method performance requirements, appendix F, https://www.aoac.org/resources/guidelines-for-standard-method-performance-requirements/ 2016 | 71. |
Kergaravat, S.; Althaus, R.; Hernández, S. Screening fluorescent method for the fluoroquinolone family in groundwater samples from intensive livestock production systems. J. Environ. Anal. Chem. 2018, 98(11), 1-17. https://doi.org/10.1080/03067319.2018.1520227 | 72. |
Boni, S.; Marin, G.; Campaña, L.; Marin, L.; Risso-Patrón, S.; Marin, G.; et al. Association between consumption of fluoroquinolones and carbapenems and their resistance rates in pseudomonasaeruginosa in Argentina. Interdiscip. Perspect. Infect. Dis. 2022, 924212, 1-7. https://doi.org/10.1155/2022/3924212 | 73. |
Zou, M.; Tian, W.; Zhao, J.; Chu, M.; Song, T. Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: A review on source, concentration and removal. Process Saf. Environ. 2022, 160, 116-129. https://doi.org/10.1016/j.psep.2022.02.013 | 74. |
Mastrángelo, M.; Valdés, M.; Eissa, B.; Ossana, N.; Barceló, D.; Sabater, S.; et al. Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. Sci. Total Environ. 2022, 828, 154303. https://doi.org/10.1016/j.scitotenv.2022.154303 | 75. |
Teglia, C.; Gutierrez, F.; Machado, S.; Hadad, H.; Maine, M.; Goicoechea, H. Spatial occurrence of emerging contaminants in rivers and wastewater. Analysis of environmental and human risks. Environ. Toxicol. Chem. 2025, 44(2), 397–409. https://doi.org/10.1093/etojnl/vgae075 | 76. |
This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Abstract
A screening method for detecting the quinolone antibiotic family using an amperometric sensor was developed. The sensor was built by modifying a cylindrical graphite-epoxy composite (cGECE)-based electrode with Prussian Blue (PB). The PB-cGECE sensor was characterized by X-ray diffraction, optical microscopy, laser Raman microscopy, VIS and Fourier Transform Infrared (FTIR) spectroscopies, and cyclic voltammetry. As a result, the sensor exhibited excellent electrocatalytic behavior in the oxidation of quinolones compared to the bare graphite electrode. The electrochemical parameters, including electroactive surface coverage, the transfer coefficient, and the standard heterogeneous rate constant, were obtained from cyclic voltammograms. Calibration curves for seven quinolones were performed by amperometric detection on a PB-cGECE sensor with limits of detection of 3, 20, 30, 10, 45, 35, and 30 μg L-1 for ciprofloxacin, danofloxacin, enrofloxacin, marbofloxacin, norfloxacin, ofloxacin, and sarafloxacin, respectively. Ciprofloxacin was selected as a representative congener of the quinolone family in the screening evaluation of the water sample using a detection capability (CCβ) of 4.0 μg L-1 to classify samples as compliant or non-compliant. The method complies with Commission Implementing Regulation (EU) 2021/808 for screening techniques and also shows good precision, selectivity, and applicability in aqueous environmental matrices with a total analysis time of 5 min.
Abstract Keywords
Quinolone antibiotic, electrochemical detection, amperometry, Prussian blue, water.
This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Editor-in-Chief
This work is licensed under the
Creative Commons Attribution 4.0
License.(CC BY-NC 4.0).