Research Article

Characterization of the volatiles of Ericameria linearifolia from southwestern Utah

Kathy Swor¹, Ambika Poudel², Prabodh Satyal², and William N. Setzer^{2,3,*}

- Independent Researcher, 1432 W. Heartland Dr., Kuna, ID 83634, USA. 1.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA. 2.
- 3. Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.

Abstract

Article Information

Received: 18 January 2024 Revised: 12 February 2024 Accepted: 14 February 2024 Published: 16 February 2024

Academic Editor Prof. Dr. Radosław Kowalski

Corresponding Author Prof. Dr. William N. Setzer

E-mail: setzerw@uah.edu. wsetzer@chemistry.uah.edu Tel.: +1-256-468-2862

Keywords

Narrowleaf goldenbush, Asteraceae, essential oil, gas chromatography, chemical composition, enantiomers. chiral.

Ericameria linearifolia, the narrowleaf goldenbush, is a conspicuous shrub growing in mountain and desert areas of California, southern Nevada, northwestern Arizona, and southwestern Utah. The purpose of this study was to obtain and chemically characterize the essential oil of this plant. Aerial parts of E. linearifolia were collected from southwestern Utah and hydrodistilled to give yellow essential oils in 1.290-1.817% yield, which were analyzed by gas chromatographic methods. The essential oils were dominated by monoterpene hydrocarbons (68.7-73.2%) and oxygenated monoterpenoids (16.2-18.7%). The major components were sabinene (13.2-14.3%), β -pinene (4.0-13.4%), β phellandrene (0.3-13.9%), myrcene (6.0-12.2%), terpinen-4-ol (6.3-8.1%), limonene (1.5-15.8%), (Z)-β-ocimene (4.6-6.1%), (E)-β-ocimene (3.3-7.5%), and α-pinene (4.5-8.2%). Enantioselective GC/MS revealed the (+)-enantiomers to predominate for α -thujene, sabinene, cis-sabinene hydrate, trans-sabinene hydrate, and terpinen-4-ol, while the (-)enantiomers predominated for β -phellandrene and verbenone. However, the enantiomeric distributions were not consistent for α -pinene, β -pinene, limonene, or α terpineol, while linalool was virtually racemic.

1. Introduction

The genus Ericameria Nutt. (Asteraceae) contains 41 species, which are found in southwestern and western North America [1, 2]. Ericameria linearifolia (DC.) Urbatsch & Wussow (narrow-leaf golden bush) (syn. Happlopappus linearifolius DC.) is a shrub, 40-150 cm tall, the leaves are 12-55 mm long and 0.5-3 mm wide; the flower heads appear in spring and early summer and contain 3-18 ray florets and 16-60 disc florets (Fig. 1) [3, 4]. The native range of the plant includes California, southern Nevada, southwestern Utah, western Arizona, and northern Baja California (Fig. 2) [3], and grows in rocky or sandy soils on mountainsides, dry creek beds, deserts, and mesas [4]. The Kawaiisu people of California have used E. linearifolia in their traditional medicine [5]. A

decoction of leaves and flowers was applied to limbs to treat rheumatism and applied externally to relieve soreness.

Labdane diterpenoids (18a-succinyloxy-labd-7-en-15oic acid and 8,17H-7,8-dehydropinifolic acid) [6] and flavonoids (kaempferol, 3-methylkaempferol, 3,4'dimethylkaempferol, quercetin, 3-methylquercetin, 3'-methylquercetin, and 3,3'-dimethylquercetin) [7] have been isolated and characterized from E. linearifolia. As far as we are aware, however, there have been no previous investigations on the essential oil of E. linearifolia. Apparently, only two other species of Ericameria have been analyzed in terms of essential composition, Ericameria (Pursh) oil nauseosa G.L.Nesom & G.I.Baird [8-10] and Ericameria laricifolia

Figure 1. *Ericameria linearifolia* (DC.) Urbatsch & Wussow (narrowleaf goldenbush). A: Photograph of the plant at the time of collection by K. Swor. B: Scan of the pressed plant by W.N. Setzer.

(A.Gray) Shinners [11]. As part of our continuing interest in the essential oils of Great Basin Asteraceae, the purpose of this study is to obtain and chemically characterize the essential oil of *E. linearifolia*.

Figure 2. Native range of *Ericameria linearifolia* (based on Urbatsch & Wussow, 1979 [3]).

2. Materials and methods

2.1. Plant material

Three different samples (three different plants) of *E. linearifolia* were collected on 26 April 2023 near Toquerville, Utah (37°17′9″ N, 113°18′21″ W, 1180 m asl). The plant was identified in the field by W.N. Setzer using a field guide [12] and later verified by comparison with herbarium samples from the New York Botanical Garden [13]. A sample of the plant was vouchered with the University of Alabama in Huntsville herbarium (WNS-El-6980). The fresh plant material was frozen (–20 °C) until distillation. The aerial parts of each plant were hydrodistilled using a Likens-Nickerson apparatus for 3 h with continuous extraction of the distillate with dichloromethane to give yellow essential oils (Table 1).

2.2. Gas chromatographic analysis

The essential oils from the aerial parts of *E. linearifolia* were analyzed by gas chromatography (GC/MS and GC-FID) as previously described [14]. Retention indices (RI) were determined using the linear equation of van den Dool and Kratz [15]. The essential oil components of *E. linearifolia* were identified by comparing their RI values (within ten RI units) and their MS fragmentation patterns (> 80% similarity)

Sample No.	Mass aerial parts (g)	Mass essential oil (g)	Yield (%, w/w)
#1	109.65	1.4144	1.290%
#2	117.04	1.8910	1.616%
#3	180.98	3.2888	1.817%

Table 1. Details of hydrodistillation of *Ericameria linearifolia*.

with those reported in the Adams [16], FFNSC3 [17], NIST20 [18], and Satyal [19] databases. The compound percentages were calculated from raw peak integration without standardization. Enantioselective GC/MS was carried out as described previously [14]. The individual enantiomers were determined by comparison of RI values with authentic samples (Sigma-Aldrich, Milwaukee, WI, USA), which are compiled in our in-house database. Enantiomeric distributions were calculated from raw peak areas.

3. Results and discussion

Hydrodistillation of three different plant samples of *E. linearifolia* from southwestern Utah gave yellow essential oils in yields of 1.290-1.817% (w/w). Gas chromatographic analysis (GC/MS, GC-FID) allowed for the identification of 122 components accounting for 99.1-99.6% of the total compositions (Table 2).

The major components in E. linearifolia essential oils were sabinene (13.2-14.3%), β-pinene (4.0-13.4%), βphellandrene (0.3-13.9%), myrcene (6.0-12.2%), terpinen-4-ol (6.3-8.1%), limonene (1.5-15.8%), (Ζ)-βocimene (4.6-6.1%), (*E*)- β -ocimene (3.3-7.5%), and α pinene (4.5-8.2%). As far as we are aware, there are only two previous reports on the essential oils of Ericameria species, E. laricifolia [11] and E. nauseosa [8-10]. The major components identified in E. laricifolia were β -phellandrene (24.3%), limonene (22.5%), β pinene (17.5%), α -phellandrene (5.3%), and α -pinene (4.3%); while the major components (averages) in E. *nauseosa* were β -phellandrene (30.1%), β -pinene (10.3%), limonene (6.3%), (*Z*)-β-ocimene (6.4%), sabinene (4.1%), myrcene (3.6%), and (E)- β -ocimene (3.5%). Thus, there are qualitative similarities in the essential oils of the three Ericameria species, but quantitative differences. α -Pinene concentrations (average 5.9%) were higher in *E. linearifolia* than those reported for E. laricifolia (4.3%) or E. nauseosa (average 0.6%). Similarly, sabinene concentrations (average 13.8%) were also higher in *E. linearifolia* than those for E. laricifolia (not observed) or E. nauseosa (average 3.9%). β-Pinene concentrations were generally high in the *Ericameria* essential oils, *E. linearifolia* (average 10.0%), *E. laricifolia* (17.5%), and *E. nauseosa* (average 12.2%). Likewise, limonene concentrations were generally high in all three *Ericameria* essential oils, *E. linearifolia* (average 6.3%), *E. laricifolia* (22.5%), and *E. nauseosa* (average 9.0%). However, the concentration of β -phellandrene was lower in *E. linearifolia* (average 8.8%) than either *E. laricifolia* (24.3%) or *E. nauseosa* (average 7.7%). Terpinen-4-ol levels were high in *E. linearifolia* (average 7.0%), but lower in *E. laricifolia* (2.4%) and *E. nauseosa* (average 1.9%).

Several of the major components of E. linearifolia essential oil have shown relevant biological activity [20, 21]. For example, α -pinene has shown antiinflammatory and antinociceptive activities in rodent [22-25], while β -pinene has shown models antinociceptive actions in rats [26]. Myrcene has also shown anti-inflammatory and analgesic effects in rodent models [27, 28]. Terpinen-4-ol has demonstrated antioxidant and anti-inflammatory activities as well as anti-arthritic effects attributed to downregulation of the pro-inflammatory the cytokines, IL-1ß, TNF α , IRAK, and NF- κ B [29]. The anti-inflammatory and analgesic effects of the major components in E. linearifolia may account for the traditional use of this plant to treat rheumatism and other pains.

Enantioselective GC/MS was carried out to evaluate the enantiomeric distributions of chiral monoterpenoids (Table 3). The (+)-enantiomers predominated for α -thujene, sabinene, *cis*-sabinene hydrate, trans-sabinene hydrate, and terpinen-4-ol, while the (-)-enantiomers predominated for β phellandrene and verbenone. Curiously, the distributions were not consistent enantiomeric between the three samples for α -pinene, β -pinene, limonene, and α -terpineol; the dominant enantiomers are switched for sample #1 compared to samples #2 and #3. Linalool was virtually racemic in the essential oils. In contrast, the essential oils of E. nauseosa showed (–)- α -thujene, (–)- α -pinene, (–)-sabinene, (–)- β -pinene, (–)- β -phellandrene, (–)-*cis*-sabinene

Table 2. Chemical composition (percent of total) of the essential oil from the aerial parts of Ericameria linearifolia.

RuleCompounds#1#2#3925925 a -Thujene0.60.90.9933933 a -Pinene4.55.18.2949950Camphenetrtrtr953953Thuja-2,4(10)-diene0.20.20.3973972Sabinene13.213.814.3978978 β -Pinene4.012.713.4990989Myrcene12.26.46.010061007 a -Phellandrenetr0.10.110071007 a -Terpinene1.22.01.510251025 p -Cymene1.31.11.210301030Limonene15.81.51.610321031 β -Phellandrene4.65.76.110471046 (E) - β -Ocimene7.54.83.310381058 γ -Terpinene2.43.62.810701069 cis -Sabinene hydrate0.90.70.710851086Terpinolene0.20.10.1109610986-Camphenonetr10981098Perillenetr10981098Perillenetr10981098Perillenetr10981098Perillenetr11011101trans-Sabinene hydrate0.6
925925 a -Thujene0.60.90.9933933 a -Pinene4.55.18.2949950Camphenetrtrtrtr953953Thuja-2,4(10)-diene0.20.20.3973972Sabinene13.213.814.3978978 β -Pinene4.012.713.4990989Myrcene12.26.46.0100610063-Ethenyl-1,2-dimethylcyclohexa-1,4-dienetrtr0.110071007 α -Phellandrenetr0.10.110171017 α -Terpinene1.22.01.510251025 p -Cymene1.31.11.21030Limonene15.81.51.610321031 β -Phellandrene0.313.912.310351034(Z)- β -Ocimene4.65.76.110471046(E)- β -Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086trans-Linalool oxide (furanoid)0.10.10.110901091 p -Cymenene0.20.10.110861086trans-Linalool oxide (furanoid)0.60.30.510861086trans-Linalool oxide (furanoid)0.10.10.110911098
933933α-Pinene4.55.18.2949950Camphenetrtrtr953953Thuja-2,4(10)-diene0.20.20.3973972Sabinene13.213.814.3978978β-Pinene10.26.46.0100610063-Ethenyl-1,2-dimethylcyclohexa-1,4-dienetrtr0.110071007α-Phellandrenetr0.10.110171017α-Terpinene1.31.11.210301030Limonene15.81.51.610321031β-Phellandrene7.54.83.310351034(Z)-β-Ocimene7.54.83.310581058γ-Terpinene0.60.90.710851066trans-Linalool oxide (furanoid)0.10.10.110901091p-Cymenene0.20.10.110951086Ferninolene7.54.83.310861086trans-Linalool oxide (furanoid)0.10.10.1109610986-Camphenonetr10911091p-Cymenene0.60.50.410911098Perillenetr10981098Perillenetr10981098Perillene0.10.10.1-11011110Linalool oxide (furanoid)0.6 <t< td=""></t<>
949950Camphenetrtrtrtr953953Thuja-24(10)-diene0.20.20.3973972Sabinene13.213.814.3978978 β -Pinene4.012.713.4970989Myrcene12.26.46.0100610063-Ethenyl-1,2-dimethylcyclohexa-1,4-dienetr0.10.110070007 α -Phellandrenetr0.10.110171017 α -Terpinene1.22.01.510251025 p -Cymene1.31.11.210301030Limonene15.81.51.610321031 β -Phellandrene0.313.912.310351034(Z)- β -Ocimene4.65.76.110471046(D)- β -Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086trans-Linalool oxide (furanoid)0.10.10.110901091 p -Cymenene0.20.10.1109610986-Camphenonetr $-$ -10981098Perillenetr $-$ -10991091 p -Cymenene0.60.30.510041101Linalool0.60.30.511051124Gise-Minethydrate
953 953 Thuja-2,4(10)-diene 0.2 0.2 0.3 973 972 Sabinene 13.2 13.8 14.3 978 978 β-Tinene 4.0 12.7 13.4 990 989 Myrcene 12.2 6.4 6.0 1006 1006 3-Ethenyl-1,2-dimethylcyclohexa-1,4-diene tr 0.1 0.1 1007 0.07 α-Phellandrene tr 0.1 0.1 1017 1017 a-Terpinene 1.2 2.0 1.5 1025 1025 p-Cymene 1.3 1.1 1.2 1030 1030 Limonene 15.8 1.5 1.6 1032 1031 β-Phellandrene 0.3 13.9 12.3 1035 1034 (Z)-β-Ocimene 7.5 4.8 3.3 1047 1046 (E)-β-Ocimene 7.5 4.36 2.8 1058 1058 y-Terpinene 0.4 0.6 0.9 </td
973 972 Sabinene 13.2 13.8 14.3 978 978 β-Pinene 4.0 12.7 13.4 990 989 Myrcene 12.2 6.4 6.0 1006 1006 3-Ethenyl-1,2-dimethylcyclohexa-1,4-diene tr tr 0.1 1007 1007 α-Pellandrene tr 0.1 0.1 1017 1017 α-Terpinene 1.2 2.0 1.5 1025 1025 p-Cymene 1.3 1.1 1.2 1030 1030 Limonene 15.8 1.5 1.6 1032 1031 β-Phellandrene 0.3 13.9 12.3 1035 1034 (2)-β-Ocimene 4.6 5.7 6.1 1047 1046 (E)-β-Ocimene 7.5 4.8 3.3 1058 1058 γ-Terpinene 2.4 3.6 2.8 1070 1069 cis-Sabinene hydrate 0.6 0.9 0.8 1086 1086 trams-Linalool oxide (furanoid) 0.1 0.1 <t< td=""></t<>
978978β-Pinene4.012.713.4990989Myrcene12.26.46.0100610063-Ethenyl-1,2-dimethylcyclohexa-1,4-dienetrtr0.110071007α-Phellandrenetr0.10.110171017α-Terpinene1.22.01.510251025p-Cymene1.31.11.210301030Limonene15.81.51.610321031β-Phellandrene0.313.912.310351034(Z)-β-Orimene4.65.76.110471046(E)-β-Orimene7.54.83.310581058γ-Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.110961098Perjmenene0.60.30.510011101Linalool0.60.30.50.411001101Linalool0.60.30.50.411101112Rose oxide0.10.10.1-11221124cis-p-Menth-2-en-1-ol0.40.60.40.411271127α-Campholene0.20.20.51111281128(4E,6Z)-allo-Coimene0.20.20.511<
990989Myrcene12.26.46.0100610063-Ethenyl-1,2-dimethylcyclohexa-1,4-dienetrtr0.110071007α-Phellandrenetr0.10.110171017α-Terpinene1.22.01.510251025p-Cymene1.31.11.210301030Limonene15.81.51.610321031β-Phellandrene0.313.912.310351034(Z)-β-Ocimene4.65.76.110471046(E)-β-Ocimene7.54.83.310581058γ-Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.8108617ans-Linalool oxide (furanoid)0.10.10.1109610986-Camphenonetr10981098Perillenetr10981098Perillene0.60.30.511011101trans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.30.511091091p-Cymenene0.10.1-11091101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydr
100610063-Ethenyl-1,2-dimethylcyclohexa-1,4-dienetrtr0.110071007 α -Phellandrenetr0.10.110171017 α -Terpinene1.22.01.510251025 p -Cymene1.31.11.210301030Limonene15.81.51.610321031 β -Phellandrene0.313.912.310351034(Z)- β -Ocimene4.65.76.110471046(E)- β -Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.110901091 p -Cymenene0.20.10.110981098Perillenetr10981098Perillene0.60.50.411011101trans-Sabinene hydrate0.60.50.411011101trans-Sabinene hydrate0.60.50.411111112Rose oxide0.10.1-11221124Chrysanthenone0.10.1-11241159Molo0.40.60.411251124cis: p -Menth-2-en-1-ol0.40.60.411251128 <t< td=""></t<>
10071007 α -Phellandrenetr0.10.110171017 α -Terpinene1.22.01.510251025 p -Cymene1.31.11.210301030Limonene15.81.51.610321031 β -Phellandrene0.313.912.310351034 $\langle Z \rangle$ - β -Ocimene4.65.76.110471046 $\langle E \rangle$ - β -Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069 cis -Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.110911091 p -Cymenene0.20.10.110981098Perillenetr10981098Perillene hydrate0.60.30.511001101trans-Sabinene hydrate0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221124 $cis-p$ -Menth-2-en-1-ol0.40.60.411251124 $cis-p$ -Menth-2-en-1-ol0.40.60.411251128($E_i \delta_i C_j allo$ -Ocimene0.20.20.211391139Nopinone0.1trtr1141<
10171017 α -Terpinene1.22.01.510251025 p -Cymene1.31.11.210301030Limonene15.81.51.610321031 β -Phellandrene0.313.912.310351034(Z)- β -Ocimene4.65.76.110471046(E)- β -Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.210901091 p -Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221124cis-p-Menth-2-en-1-ol0.40.60.411251124cis-p-Menth-2-en-1-ol0.40.60.411271127 α -Campholenal0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10251025 p -Cymene1.31.11.210301030Limonene15.81.51.610321031 β -Phellandrene0.313.912.310351034(Z)- β -Ocimene4.65.76.110471046(E)- β -Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.210901091 p -Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101122Rose oxide0.10.1-11221124cis-p-Menth-2-en-1-ol0.40.60.411251124cis-p-Menth-2-en-1-ol0.40.60.411271127 α -Campholenal0.20.20.211391139Nopinone0.1trtrtr11411141trans-Pinocarveol0.30.20.4
10301030Limonene15.81.51.610321031β-Phellandrene0.313.912.310351034(Z)-β-Ocimene4.65.76.110471046(E)-β-Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.210901091p-Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.50.411101112Rose oxide0.10.1-11221124Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10321031β-Phellandrene0.313.912.310351034(Z)-β-Ocimene4.65.76.110471046(E)-β-Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.210901091 p -Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.30.511011112Rose oxide0.10.1-11221124cis-p-Menth-2-en-1-ol0.40.60.411271127 α -Campholenal0.20.20.211281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10351034(Z)-β-Ocimene4.65.76.110471046(E)-β-Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.210901091p-Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221124Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127 α -Campholenal0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10471046 (E) - β -Ocimene7.54.83.310581058 γ -Terpinene2.43.62.810701069 cis -Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086 $trans$ -Linalool oxide (furanoid)0.10.10.210901091 p -Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124 cis - p -Menth-2-en-1-ol0.40.60.411271127 α -Campholenal0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10581058 γ -Terpinene2.43.62.810701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.210901091p-Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.30.511011101krans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221124cis-p-Menth-2-en-1-ol0.40.60.411271127 α -Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10701069cis-Sabinene hydrate0.90.70.710851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.210901091p-Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221124Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10851086Terpinolene0.60.90.810861086trans-Linalool oxide (furanoid)0.10.10.210901091p-Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10861086trans-Linalool oxide (furanoid)0.10.10.210901091p-Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10901091 <i>p</i> -Cymenene0.20.10.1109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
109610986-Camphenonetr10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
10981098Perillenetr11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
11001101Linalool0.60.30.511011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.1trtr11391139Nopinone0.30.20.4
11011101trans-Sabinene hydrate0.60.50.411101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
11101112Rose oxide0.10.1-11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
11221122Chrysanthenone0.10.10.111251124cis-p-Menth-2-en-1-ol0.40.60.411271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
11251124 $cis-p$ -Menth-2-en-1-ol0.40.60.411271127 α -Campholenal0.20.20.511281128 $(4E,6Z)$ -allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
11271127α-Campholenal0.20.20.511281128(4E,6Z)-allo-Ocimene0.20.20.211391139Nopinone0.1trtr11411141trans-Pinocarveol0.30.20.4
1128 1128 (4E,6Z)-allo-Ocimene 0.2 0.2 0.2 1139 1139 Nopinone 0.1 tr tr 1141 1141 trans-Pinocarveol 0.3 0.2 0.4
1120 1120 (12) (12) (12) (12) 1139 1139 Nopinone 0.1 tr 1141 1141 trans-Pinocarveol 0.3 0.2 0.4
1141 1141 trans-Pinocarveol 0.3 0.2 0.4
1142 1141 <i>cis</i> -Verbenol 0.3 0.3 0.7
1143 1142 trans-n-Menth-2-en-1-ol 0.3 0.3 0.1
1146 1146 trans-Verbenol 1.5 1.1 2.3
1149 1149 <i>iso</i> -Pulegol 0.1 0.1 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1156 1156 Menthone tr 0.1 -
1157 1157 Sabina ketone tr tr 0.1
1157
1100 1107 100 isopareon 0.1 0.1 - 1162 1164 Pinocaryone 0.1 0.1 0.2
1102 1104 1 model volic 0.1 0.1 0.2 1173 1171 $n_{\rm Menthal}$ 1.5-dien-8-ol 0.5 0.5 1.0
1176 1176 Nonanol 0.2 ++
1178 1178 Octanoic acid 0.1 1.4 0.2

Table 2. (Continued)

DI DI			Sample numbers			
Klcalc	KIdb	Compounds	#1	#2	#3	
1182	1180	Terpinen-4-ol	6.8	8.1	6.3	
1188	1188	<i>p</i> -Cymen-8-ol	0.4	0.5	0.8	
1196	1195	α -Terpineol	0.5	0.7	0.7	
1197	1195	Myrtenol	0.3	0.1	0.3	
1198	1198	cis-Piperitol	0.1	0.1	0.1	
1208	1208	Verbenone	0.8	0.6	1.5	
1210	1209	trans-Piperitol	0.1	0.2	0.1	
1220	1218	trans-Carveol	0.1	0.1	0.2	
1227	1227	Citronellol	0.1	0.1	0.1	
1243	1242	Cuminal	tr	tr	tr	
1244	1246	Carvone	tr	tr	0.1	
1250	1249	Geraniol	0.2	0.1	0.2	
1269	1270	iso-Piperitenone	0.1	0.1	0.1	
1273	1276	2,3-Pinanediol	0.1	0.1	0.2	
1277	1277	Phellandral	-	tr	tr	
1293	1294	<i>p</i> -Cymen-7-ol	-	-	0.1	
1331	1330	Bicycloelemene	-	0.1	0.1	
1346	1348	a-Cubebene	0.2	-	-	
1349	1349	Citronellyl acetate	0.1	0.1	-	
1371	1372	Decanoic acid	2.0	1.4	0.8	
1375	1375	α-Copaene	tr	-	0.1	
1387	1387	β-Cubebene	0.1	-	-	
1389	1390	<i>trans</i> -β-Elemene	0.1	0.1	0.1	
1419	1417	(<i>E</i>)-β-Caryophyllene	0.1	0.6	0.3	
1429	1433	β-Copaene	-	-	tr	
1432	1432	trans-α-Bergamotene	-	tr	tr	
1437	1438	Aromadendrene	tr	tr	tr	
1449	1452	Cadina-3,5-diene	0.1	tr	-	
1452	1452	(E)-β-Farnesene	tr	0.1	tr	
1456	1454	a-Humulene	tr	tr	tr	
1460	1457	allo-Aromadendrene	0.1	0.2	0.1	
1465	1463	γ-Decalactone	tr	-	tr	
1472	1472	trans-Cadina-1(6),4-diene	0.1	tr	tr	
1475	1478	γ-Muurolene	0.1	0.1	0.1	
1478	1478	γ-Curcumene	0.3	0.1	0.5	
1481	1480	Germacrene D	0.9	0.4	1.2	
1489	1489	β-Selinene	-	tr	-	
1491	1491	Viridiflorene	tr	0.1	0.1	
1492	1490	γ-Amorphene	0.2	tr	tr	
1496	1497	Bicyclogermacrene	0.4	0.2	0.3	
1496	1497	epi-Cubebol	0.3	-	-	
1498	1500	α-Muurolene	0.1	0.2	0.1	
1507	1508	β-Bisabolene	0.1	tr	0.1	
1509	1509	β-Curcumene	tr	-	tr	

Table 2. (Continued)

		0 1	Sample numbers				
KIcalc	КІдь	Compounds	#1	#2	#3		
1513	1510	1,11-Oxidocalamenene	-	-	0.1		
1513	1512	γ-Cadinene	0.1	0.2	0.1		
1516	1515	Cubebol	0.3	tr	-		
1518	1518	δ-Cadinene	1.4	0.8	0.4		
1522	1519 <i>trans</i> -Calamenene		0.1	-	-		
1523	1521	Zonarene	0.1	-	-		
1533	1533	trans-Cadina-1,4-diene	0.1	tr	-		
1537	1538	α-Cadinene	tr	tr	tr		
1542	1541	α-Calacorene	0.1	0.1	0.1		
1563	1560	Dodecanoic acid	0.2	0.1	0.1		
1578	1576	Spathulenol	0.7	0.4	0.5		
1583	1584	10-epi-Juneol	0.1	-	0.1		
1583	1587	Caryophyllene oxide	-	0.2	-		
1587	1590	Globulol	0.1	0.1	0.1		
1588	1590	Gleenol	tr	-	-		
1595	1594	Viridiflorol	0.1	0.1	0.1		
1605	1605	Ledol	tr	tr	tr		
1607	1609	Rosifoliol	tr	-	tr		
1616	1616	1,10-di-epi-Cubenol	-	tr	-		
1629	1628	1-epi-Cubenol	0.4	0.1	0.1		
1633	1629	iso-Spathulenol	0.1	0.1	0.1		
1643	1643	τ-Cadinol	0.4	0.4	0.5		
1645	1645	τ-Muurolol	0.4	0.5	0.2		
1647	1645 α -Muurolol (= δ -Cadinol)		0.2	0.1	0.1		
1656	1655	α -Cadinol	0.9	1.2	0.7		
1686	1688	α-Bisabolol	2.1	0.1	0.1		
1694	1687	Shyobunol	0.3	0.3	0.1		
1733	1735	Oplopanone	0.1	0.1	0.1		
1840	1841	Phytone	tr	tr	tr		
2105	2106	Phytol	tr	tr	tr		
2300	2300	Tricosane	0.2	0.1	0.1		
2400	2400	Tetracosane	0.1	tr	tr		
2500	2500	Pentacosane	0.1	0.1	0.1		
2700	2700	Heptacosane	0.1	tr	0.1		
Compound Cla	isses						
Monoterpene hydrocarbons		68.7	73.2	73.1			
Oxygenated mo	noterpenoids		16.2	16.4	18.7		
Sesquiterpene h	ydrocarbons		4.6	3.1	3.6		
Oxygenated sest	quiterpenoids		6.6	3.7	2.9		
Diterpenoids			tr	tr	tr		
Others			3.0	3.2	1.4		
Total identified			99.1	99.6	99.6		

 RI_{calc} = Retention index determined using a homologous series of *n*-alkanes on a ZB-5ms column. RI_{db} = Reference retention index from the databases. tr = trace (< 0.05%). - = not detected.

Table 3. Enantiomeric distribution (%)	of chiral monoter	penoids in	Ericameria	linearifolia	essential o	oils
Tuble 5. Entantionience distribution (,0)	of children monoter	perioras in	Litenneim	meanyour	coociniai	5110

C	RIdb	DI		Sample numbers			
Compounds		Klcalc	#1	#2	#3		
(+)-α-Thujene	950	952	100.0	88.8	85.6		
(–)-α-Thujene	951	954	0.0	11.2	14.4		
(–)-α-Pinene	976	975	35.6	68.3	77.9		
(+)- <i>α</i> -Pinene	982	981	64.4	31.7	22.1		
(+)-Sabinene	1021	1016	92.6	73.7	71.6		
(–)-Sabinene	1030	1027	7.4	26.3	28.4		
(+)-β-Pinene	1027	1022	73.0	16.1	23.4		
(–)-β-Pinene	1031	1030	27.0	83.9	76.6		
(–)-α-Phellandrene	1050	1051	-	72.1	-		
(+)- α -Phellandrene	1053	1053	-	27.9	-		
(–)-Limonene	1073	1073	2.3	76.3	82.8		
(+)-Limonene	1081	1078	97.7	23.7	17.2		
(–)-β-Phellandrene	1083	1080	-	100.0	100.0		
(+)-β-Phellandrene	1089	-	-	0.0	0.0		
(+)-cis-Sabinene hydrate	1199	1198	86.4	71.0	69.4		
(–)- <i>cis</i> -Sabinene hydrate	1202	1201	13.6	29.0	30.6		
(–)-Linalool	1228	1227	47.1	44.5	43.5		
(+)-Linalool	1231	1230	52.9	55.5	56.5		
(+)-trans-Sabinene hydrate	1231	1229	93.5	73.2	73.0		
(-)-trans-Sabinene hydrate	1235	1234	6.5	26.8	27.0		
(+)-Terpinen-4-ol	1297	1291	73.1	55.0	62.9		
(–)-Terpinen-4-ol	1300	1296	26.9	45.0	37.1		
(–)-α-Terpineol	1347	1346	29.2	64.1	58.5		
(+)-α-Terpineol	1356	1354	70.8	35.9	41.5		
(–)-Verbenone	1368	1369	-	96.2	96.4		
(+)-Verbenone	1380	1374	-	3.8	3.6		

RI_{db} = Retention index from our in-house database. RI_{calc} = Calculated retention index based on a homologous series of *n*-alkanes on a Restek B-Dex 325 capillary column. - = compound not detected.

hydrate, (–)-*trans*-sabinene hydrate, (–)-terpinen-4-ol, and (–)- α -terpineol to be the dominant stereoisomers, while (+)-limonene predominated in *E. nauseosa* essential oils from Idaho, but (–)-limonene was the major isomer from Utah. Thus, there are no apparent consistencies in enantiomeric distributions of monoterpenoids in *Ericameria* essential oils.

4. Conclusions

There is a paucity of information regarding the essential oil compositions of *Ericameria*. Nevertheless, there seem to be some notable components common to the genus, namely β -phellandrene (up to 13.9% in *E. linearifolia* and abundant in other *Ericameria* species), α -pinene (4.5-8.2% in *E. linearifolia* and abundant in other *Ericameria* species), β -pinene (4.0-

13.4% in *E. linearifolia* and abundant in other *Ericameria* essential oils), limonene (up to 15.8% in *E. linearifolia* and abundant in other *Ericameria* species), and terpinen-4-ol. Enantioselective GC/MS, however, showed the enantiomeric distributions of chiral monoterpenoids to be inconsistent, both between *Ericameria* species as well as within *E. linearifolia*. There are 41 species of *Ericameria*, but apparently only three species have had the essential oils examined, *E. nauseosa* (three different investigations), *E. laricifolia* (one investigation from 1977), and *E. linearifolia* (this present work). Thus, there are ample opportunities for future investigations on *Ericameria* essential oils, which would serve to better characterize the volatile phytochemistry of this genus.

Authors' contributions

Conceptualization, W.N.S.; Methodology, P.S. and W.N.S.; Software, P.S.; Validation, W.N.S., Formal Analysis, A.P., P.S., and W.N.S.; Investigation, K.S., A.P., P.S., and W.N.S.; Resources, P.S. and W.N.S.; Data Curation, W.N.S.; Writing – Original Draft Preparation, W.N.S.; Writing – Review & Editing, K.S., A.P., P.S., and W.N.S.; Project Administration, W.N.S.

Acknowledgements

This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Funding

This research received no specific grant from any funding agency.

Availability of data and materials

All data will be made available on request according to the journal policy.

Conflicts of interest

The authors declare no conflict of interest.

References

- Mabberley, D.J. Mabberley's Plant-Book; 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0-521-82071-4.
- World Flora Online, W.F.O. *Ericameria* Nutt. Available online: https://www.worldfloraonline.org/taxon/wfo-4000013775 (accessed on Jan 8, 2024).
- Urbatsch, L.E.; Wussow, J.R. The taxonomic affinities of *Haplopappus linearifolius* (Asteraceae-Astereae). Brittonia 1979, 31, 265–275. https://doi.org/10.2307/ 2806187.
- 4. eFloras.org *Ericameria linearifolia* (de Candolle) Urbatsch & Wussow Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&ta xon_id=250066524 (accessed on Jan 8, 2024).
- Zigmond, M. Kawaiisu Ethnobotany; University of Utah Press: Salt Lake City, Utah, USA, 1981; ISBN 978-0874801323.
- Dentali, S.J.; Hoffmann, J.J.; Jolad, S.D.; Timmermann, B.N. Diterpenes of *Ericameria linearifolia*. Phytochem. 1987, 26, 3025–3028. https://doi.org/10.1016/S0031-9422 (00)84585-9.
- Wollenweber, E.; Dörr, M.; Fritz, H.; Papendieck, S.; Yatskievych, G.; Roitman, J.N. Exudate flavonoids in Asteraceae from Arizona, California and Mexico. Zeitschrift fur Naturforsch. Sect. C J. Biosci. 1997, 52,

301–307. https://doi.org/10.1515/znc-1997-5-604.

- Chao, S.; Young, D.G.; Casabianca, H.; Bertrand, M.-C. Composition of the oils of three *Chrysothamnus nauseousus* varieties. J. Essent. Oil Res. 2003, 15, 425–427. https://doi.org/10.1080/10412905.2003.9698630.
- Tabanca, N.; Demirci, B.; Crockett, S.L.; Başer, K.H.C.; Wedge, D.E. Chemical composition and antifungal activity of *Arnica longifolia*, *Aster hesperius*, and *Chrysothamnus nauseosus* essential oils. J. Agric. Food Chem. 2007, 55, 8430–8435. https://doi.org/10.1021/ jf071379c.
- Stirling, J.; Platt, B.G.; Satyal, P.; Swor, K.; Setzer, W.N. The essential oils of rubber rabbitbrush (*Ericameria nauseosa*) from north-central Utah and southwestern Idaho. Nat. Prod. Commun. 2023, 18, 1934578X231 161186. https://doi.org/10.1177/1934578X231161186.
- 11. Wang, H.-Y. The Investigation of Essential Oil of *Ericameria laricifolia*, M.S. thesis, University of Texas at El Paso, 1977.
- 12. Van Buren, R.; Cooper, J.G.; Shultz, L.M.; Harper, K.T. Woody Plants of Utah; Utah State University Press: Logan, Utah, USA, 2011, ISBN 978-0-87421-824-4.
- 13. New York Botanical Garden, N.Y.B.G. C. V. Starr Virtual Herbarium Available online: https://sweetgum. nybg.org/science/vh/ (accessed on Jun 24, 2023).
- Satyal, P.; Dosoky, N.S.; Poudel, A.; Swor, K.; Setzer, W.N. Chemical composition of the aerial parts essential oil of *Chrysothamnus viscidiflorus* from southwestern Idaho. J. Essent. Oil Plant Comp. 2023, 1, 115–121, https://doi.org/10.58985/jeopc.2023.v01i02.16.
- van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. https://doi.org/10. 1016/S0021-9673(01)80947-X.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4.
- 17. Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, Maryland, USA, 2016.
- 18. NIST20; National Institute of Standards and Technology: Gaithersburg, Maryland, USA, 2020.
- 19. Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils, Ph.D. dissertation, University of Alabama in Huntsville, Huntsville, AL, USA, 2015.
- de Sousa, D.P. Analgesic-like activity of essential oils constituents. Molecules 2011, 16, 2233–2252. https://doi.org/10.3390/molecules16032233.
- 21. Guimarães, A.G.; Quintans, J.S.S.; Quintans-Júnior, L.J.

Monoterpenes with analgesic activity — A systematic review. Phyther. Res. 2013, 27, 1–15. https://doi.org/ 10.1002/ ptr.4686.

- Santos, F.A.; Rao, V.S.N.; Silveira, E.R. Investigations on the antinociceptive effect of *Psidium guajava* leaf essential oil and its major constituents. Phyther. Res. 1998, 12, 24–27. https://doi.org/10.1002/(SICI)1099-1573(19980201)12:1<24::AID-PTR181>3.0.CO;2-B.
- Orhan, I.; Küpeli, E.; Aslan, M.; Kartal, M.; Yesilada, E. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, *Pistacia vera* L. J. Ethnopharmacol. 2006, 105, 235–240. https://doi.org/10. 1016/j.jep.2005.10.023.
- 24. Quintão, N.L.M.; da Silva, G.F.; Antonialli, C.S.; Rocha, L.W.; Filho, V.C.; Cicció, J.F. Chemical composition and evaluation of the anti-hypernociceptive effect of the essential oil extracted from the leaves of *Ugni myricoides* on inflammatory and neuropathic models of pain in mice. Planta Med. 2010, 76, 1411–1418. https://doi.org/ 10.1055/s-0029-1240891.
- Li, X.J.; Yang, Y.-J.; Li, Y.-S.; Zhang, W.K.; Tang, H.-B. α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J. Ethnopharmacol.

2016, 179, 22–26. http://dx.doi.org/10.1016/j.jep.2015. 12. 039.

- 26. Liapi, C.; Anifantis, G.; Chinou, I.; Kourounakis, A.P.; Theodosopoulos, S.; Galanopoulou, P. Antinociceptive properties of 1,8-cineole and β-pinene, from the essential oil of *Eucalyptus camaldulensis* leaves, in rodents. Planta Med. 2007, 73, 1247–1254. https://doi. org/10.1055/s-2007-990224.
- Lorenzetti, B.B.; Souza, G.E.P.; Sarti, S.J.; Santos Filho, D.; Ferreira, S.H. Myrcene mimics the peripheral analgesic activity of lemongrass tea. J. Ethnopharmacol. 1991, 34, 43–48. https://doi.org/10.1016/0378-8741(91) 90187-I.
- 28. McDougall, J.J.; McKenna, M.K. Anti-inflammatory and analgesic properties of the cannabis terpene myrcene in rat adjuvant monoarthritis. Int. J. Mol. Sci. 2022, 23, 7891. https://doi.org/10.3390/ijms23147891.
- Aslam, S.; Younis, W.; Malik, M.N.H.; Jahan, S.; Alamgeer; Uttra, A.M.; Munir, M.U.; Roman, M. Pharmacological evaluation of anti-arthritic potential of terpinen-4-ol using in vitro and in vivo assays. Inflammopharmacology 2022, 30, 945–959. https://doi. org/10.1007/ s10787-022-00960-w.