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 Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is one of the fatal cancers among all critical 

cancers. The progression of the disease is primarily due to the oncogene activation and 

inactivation of tumor suppressor genes causing genome instability and contributing to 

this malignancy in human cells. Somatic mutations drive cancer progression, and thus iden-

tification of such molecular alterations has the potential to deliver a deeper understanding 

of the nature of that tumor. Even though next-generation sequencing has discovered sev-

eral functional mutations in KRAS, TP53, CDNK2A, SMAD4, and BRCA1/2, their clinical 

effects remain unclear. Pancreatic cancer remains unmanageable, with a 5-year survival 

rate of 5-10%. The biological significance of core driver genes, the importance of studying 

somatic mutations leading to the disease diagnosis their use in clinical practice and an 

account of computational tools and databases that assist in a detailed mutational analysis 

have been discussed in this review.  

Published by https://currentsci.com  

1. Introduction 
1.1 Pancreatic cancer 

Pancreatic cancer is the eighth leading cause of cancer-

related deaths. In 2020 total of 495,773 cases was 

reported globally [1]. In 2022, new pancreatic cancer 

cases reported in the USA were 62,210 [2]. As per 

GLOBOCAN, pancreatic cancer is the 24th  most common 

disease in India, approximately 10,860 new cases have 

been reported and ranked at 18th position in terms of the 

highest fatality rate [3]. People diagnosed with 

pancreatic cancer have a 5-year survival of 5-10%. The 

survival rate is affected by several factors. However, 

when diagnosed the specific cancer stage plays a crucial  

role [4]. Amongst pancreatic cancer, up to 93% are 

exocrine adenocarcinoma; the remaining 7% are  

 

 

pancreatic neuroendocrine tumors. The intraductal 

papillary mucinous and pancreatic intraepithelial 

neoplasia are significant precursors of PDAC [5]. 
 

1.2 Molecular Genetics of Pancreatic Cancer 

Extensive research has established that pancreatic cancer 

is an inherited disease with various somatic mutations. 

Analyzing somatic mutations allows for differentiating 

pancreatic adenocarcinoma from other malignant 

neoplasms of the pancreas [6]. These mutations can be 

defined as alterations in the DNA sequence that may 

arise during replication be repaired incorrectly, or be left 

unrepaired. Several exogenous mutagens like chemicals, 

UVs, ionizing radiations, and endogenous mutagens 
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like reactive oxygen species, aldehydes, and repairing 

enzymes, can cause DNA damage. Different mutational 

processes have different unique patterns termed 

mutational signatures. Analyzing the signature patterns 

facilitates quantifying their effect on biological activity 

in a cancerous and non-cancerous genome [7]. A 

germinal mutation takes place in the germ line. Germline 

mutations are also inherited, as the mutant cell 

participates in fertilization and passes the mutation to 

the next generation. Cancer due to the germline 

mutation is inherited or hereditary cancer. Next-

generation analysis has proven promising in identifying 

germline mutations in genes, including CDKN21, TP53, 

BRCA2, ATM, MLH1, and BRCA1 responsible for 

pancreatic cancer progression in 5.5% of the cases. 

Spontaneous variations occur in somatic cells of a 

human body that include Single Nucleotide Variants 

(SNVs), chromosomal aberrations, Copy Number 

Variation (CNVs), insertion and deletions, which are 

known as "somatic mutations”[8]. Somatic mutations in 

the early-stage lead to developmental disorders, 

whereas intensifying accretion of these mutations for an 

extended period can lead to cancer progression. 
 

1.3 Somatic Mutation 

Somatic mutations cannot be passed down to the 

offspring except for the canine transmissible venereal 

tumor. Somatic mutations influence the antibodies, T 

cell, and B cell receptors. Some factors such as the 

environment, often trigger them, and they build up in 

any organism's DNA despite effective DNA repair 

mechanisms. Somatic mutations occur at a frequency of 

2 to 6 mutations per million bases in healthy tissues [8]. 

As a result, somatic cells in the same organism may 

have different genotypes (somatic mosaicism) in healthy 

development and ageing. According to a study [9] point 

mutations ranging from 1000 to 20,000 and multiple 

insertions, deletions, and rearrangements contribute to 

cancer development and progression. These figures 

were derived from research involving millions of 

mutations in different cancer forms [10]. 
 

Somatic mutations include point mutations, repeats, 

deletions, insertions, multiplication, copy number loss, 

and other genomic variations. When somatic cells split, 

chromosomal somatic mutations occur. Chromosome 

breakages, inappropriate fixing, and unequal material 

exchange during chromosome separation cause structural 

aberrations during this period. These mutations disrupt 

genes and their pathways responsible for cell growth 

and proliferation, apoptosis, neovascularization, and 

other cancer hallmarks that lead to neoplasm 

development. 
 

1.3.1 Somatic Mutation in Pancreatic Cancer  

Somatic mutations are involved in the progression of 

cancers, which makes mutational  profiling one of the 

foremost analyses of the other omics analysis to be 

considered in clinical practice. The majority of diagnosis 

at the clinical level is based on single-gene mutations. 

High throughput technologies have underlined that 

somatic alterations are a part of the process of growth 

and development. These somatic alterations may 

obstruct gene functions, such as the deactivation of 

tumor suppressor genes and oncogene activation and 

thus disrupt and deregulate crucial pathways that 

regulate normal cell growth [11]. Since almost no tumor 

can form without somatic mutations, they are essential to 

oncogenesis [12,13]. Since the existence or absence of 

particular mutations may dictate cancer therapy, 

determining a patient's mutational profile is essential in 

ensuring successful care. In colorectal, lung, pancreatic, 

and other cancer forms specific chemotherapeutics 

dependent on mutational status are already part of 

cancer therapies [14].  
 

The accumulation of somatic point mutations, also 

known as single nucleotide variants (SNVs), in the 

genome can disrupt cell activity and lead to cancer 

initiation and progression. The entire repertoire of SNVs 

across a cancer genome (which can number in the 

thousands) can be used to infer clonal populations and 

research tumor evolution statistically. As a result, 

accurate identification of all somatic SNVs including 

those with low prevalence is critical since they can 

identify clones with desirable phenotypic characteristics. 

Biomedical investigators researching tumor progression 

also try to determine how particular clones are linked to 

properties like drug resistance, metastatic ability, 

and fitness under selective therapeutic pressures. 

Somatic mosaicism refers to the genetic heterogeneity 

caused by somatic mutations [15]. PDAC is known to  
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arise from PanINlesions (pancreatic intraepithelial 

neoplasia) by accumulating somatic changes in critical 

genes over time. (Fig. 1) [16].   

 

The occurrence of pancreatic cancer begins with 

precursor lesions such as intraductal papillary 

mucinous neoplasms (IPMN), pancreatic intraepithelial 

neoplasia (PanIN) and mucinous cystic neoplasms 

(MCN). One of the most common and well-described 

PDAC precursor lesions is PanIN. Gene mutations 

occurring at the Pancreatic intraepithelial neoplasia 

stage in due course advanced dysplastic condition. 

According to the dysplasia state precursor lesions 

exhibit varying levels of mucin, varied architectural 

patterns and different proliferation rates which 

eventually results in changes in gene functionality and 

cancer cell progression. 
 

Isolation might occur in copy number alteration in 

PDAC. These events are similar to structural alterations 

in which a chromosome substitutes for another. 

Chromothripsis is one of the standard techniques 

through which various structural alterations occur in 

one cataclysmic mitotic incident. Detection of 

chromothripsis through susceptible techniques shows 

that it can be located in 65% of PDACs, in many cases, 

before polyploidization. Chromothripsis can occur 

separately or with the additional complex genomic 

incident and involve multiple chromosomes resulting in 

gene amplification, deletions, or double minutes 

formation in either case. Alternatively, structural 

rearrangements could result from continuous genomic 

damage caused by a lack of DNA repair. Advance 

extensive studies of DNA copy-number changes (CNAs) 

led to the discovery of WGD in human tumors. WGD 

was more than twice as prevalent (13per cent each) as 

TERT promoter and oncogenic KRAS mutations. 
 

In a comprehensive series of pancreatic cancers, whole-

genome sequencing revealed 2.64 Mb of a mutational 

burden on an average per somatic mutation [17]. The 

four most frequently mutated tumor suppressor genes 

are The Kirsten rat sarcoma (KRAS) oncogene, the 

tumor suppressor protein 53 (TP53), SMAD family 

member 4 (SMAD4), and the cyclin-dependent kinase 

inhibitor 2A (CDKN2A). All these mutations 

dysregulate signaling pathways, thereby affecting the 

proliferation of tumor cells and crosstalk with the 

desmoplastic TNM (tumor, nodes, and metastasis) 

surrounding them [18].  
 

Next-generation sequencing is an excellent technique for 

classifying and systematizing the full spectrum of 

somatic alterations and their characteristics. In sporadic 

pancreatic cancer studies whole-exome sequencing and 

whole-genome sequencing have led to identifying genes 

that, when mutated, can induce tumorigenesis [19]. 

KRAS, TP53, CDKN2A, and SMAD4 are the four main 

genetic alterations identified in PDAC and most 

mutations are point mutations [20]. The most  prevalent 

KRAS and TP53 mutations are seen in early-stage 

intraepithelial neoplasia implying that they have a role in 

tumor initiation [12].  
 

2. Mutations in pancreatic cancer 
The classification of PDAC with the understanding of 

molecular, genetic, and morphological details will be 

beneficial in developing targeted and potent therapeutics 

in clinical practice. The detailed analysis of somatic 

variants will bring out essential findings. Other than top 

genes like KRAS, TP53, SMAD4, CDKN2A , and 

BRCA1/2studies have reported somatic mutations in various 

genes (Fig. 2) such as ATM, TGFBR2, ARID2A, SF3B1, 

GNAS, EGFR, ERBB3, GAT6 that are involved in [20-

23] crucial biological pathways causing PDAC. Driver 

genes in PDAC are listed below, and a few frequently 

reported mutations according to COSMIC and TCGA 

are mentioned in Table 1. 
 

2.1 KRAS Mutation  

In 90 per cent to 93 per cent of pancreatic tumors 

oncogenic KRAS mutations are detected. KRAS is a 

GTPase of size 21kDa, which gets activated on binding 

to GTP and deactivated upon binding with GDP. As 

KRAS gets activated, it further activates RAF family 

kinases RAF-1, BRAF, and ARAF. RAF family members 

then get phosphorylated and activate MEK-1 and MEK-
 

Figure 1: Driver gene mutations in pancreatic adenocarcino-

ma carcinogenesis, classification of pancreatic intraepithelial 

neoplasia (PanIN) precursor of pancreatic cancer, at its differ-

ent stages (1A, 1B, 2, 3) due to the somatic mutations occur-

ring in driver genes leading to cancer metastasis.  
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2. These MEK-1 and MEK-2 further activate the 

extracellular regulatory kinases ERK-1 and ERK-2. 

These cause cell proliferations by bringing cytosolic and 

nuclear proteins like transcription factors ELK-1 and c-

Jun [24]. The mutations cause constitutive activation of 

KRAS, resulting in various processes like uncontrolled 

proliferation, which causes cancer to develop and 

spread across the cells and tissues. KRAS is also 

responsible for regulating multiple signaling pathways 

which are reportedly involved in cancer progressions, 

such as PI3K-AKT, PLC- PKC, and RAL. Mutations of 

the codons G12, G13, or Q61, by and large, 

correspond to constitutively active KRAS, activated 

KRAS. The periodic mutations in K117 and A146 are 

also known to occur. Activating mutations in KRAS are 

reported in ninety-five per cent of pancreatic cancer 

cases. Of these ninety-nine per cent of all mutations 

occur in G12 (G12D- 50%) [25]. 
 

Mutations in KRAS highly contribute to the initiation 

and progression of pancreatic cancer. KRAS mutations 

alter RAS proteins. Practically every mutation in KRAS 

is SNVs in PDACs, appearing in codons 12(~91%), 13

(~2%), and 61(~7%). The mutations at codon 12 are 

reported  to energize AKT/protein kinase B pathway 

providing resistance to apoptosis [26]. KRAS mutations 

in pancreatic cancer are due to neoplastic transformation. 

Most reports about its mutation have been on relatively 

small tumors, which lack the statistical justification  to 

determine the appropriate association with the disease 

outcome [27]. KRAS oncogene has a mutational 

frequency of 20 to 100% and can be used for diagnostic 

purposes. A subset of tumors contains multiple 

mutations in KRAS with some displaying evidence of 

biallelic mutations. 
 

2.2 TP53 Mutation  

TP53 also called antigen NY-CO-13 or p53 provides 

instructions for producing a protein called p53 which 

acts as a tumor suppressor. One of the functions of TP53    

is the activation of target genes during DNA damage or 

oxidative stress and inducing apoptosis [28]. It enhances 

the expression level of CDKN1A due to which the cell 

cycle is arrested [29]. It is regarded as the Guardian of 

the Genome as it helps in cell division and DNA repair. 

In 70% of pancreatic cancer cases, TP53 is most 

frequently mutated resulting in its binding ability 

[24,30]. In a study of pancreatic adenocarcinoma 

patients, less mRNA expression of TP53    was associated 

with a poor disease prognosis. Clinical evidence suggests 

it can be a prognostic  marker for diagnosis and therapy. 
 

2.3 CDKN2A Mutation  

The complex of the two cyclins CDK-4 and CDK-6 is 

involved in the cell cycle's phase transition from G1 to S. 

The tumor suppressor gene CDKN2A regulates the cell 

cycle progression by suppressing the CDK-4 and CDK-6 

complex. The CDKN2A gene is located on chromosome 

9p21 in the region that shows high-frequency loss of 

heterozygosity in various neoplasia. The tumor 

suppressor region of the CDKN2A gene encodes two 

distinct proteins, P16 and P14. P16 consists of three exons 

that arrest the cell cycle at the G1 phase thereby 

stopping cell growth [31]. The phosphorylation of 

retinoblastoma protein is obstructed. The 

retinoblastoma protein affects the E2F transcription 

factor and participates in the negative regulation of the 

cell cycle. Another protein, p14ARF, has a negative 

effect on cell growth as it stabilizes p53 activation and 

targets some CDKs at G1 and    G2 phases thereby 

inducing apoptosis [32]. Mutations like promoter 

silencing, heterozygosity, or homozygous deletion 

disrupt the operation of CDKN2A. Some clinical studies 

on CDKN2A mutation reported these mutations as a 

prognostic and prophetical  biomarker. 
 

2.4 SMAD4 Mutation 

SMAD4 acts as tumor suppressor gene. It is known to be 

deactivated in more than 50% of pancreatic 
 

Figure 2: Gene mutation frequency of top 20 mutated genes 

in pancreatic cancer.  
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adenocarcinomas, inactivation occurs due to 

homozygous deletion or intragenic mutation. SMAD-4 

translocate itself in trimeric form into the nucleus 

activates gene expression and causes cell growth 

inhibition [33,34]. SMAD-4 proteins can transduce 

signals from the cell surface to the nucleus. SMAD-4 

mediates TGF-β transduction and gene regulation. 

Transforming growth factors  regulate proliferation, 

differentiation, motility, and necrobiosis [34]. 

2.5 BRCA1/2Mutation 

BRCA1/2 gene is a tumor suppressor that plays a 

significant role in the recognition, transcription, 

regulation, and double-strand break repair of DNA to 

forestall cell types from developing mutations [35]. 

Somatic mutations in BRCA1 and BRCA2 are reported 

in about 9% of PDAC patients. Somatic mutations of 

BRCA2 appear to be uncommon in tumors of the 

pancreas. The mechanism by which mutant BRCA2 

 

Table 1. List of genes and mutations predominantly involved in pancreatic cancer.  

S.No Gene name Mutation type Position 

1. KRAS MISSENSE G12D, G12V, G12C, G13D, Q61H, G12R, G12A, G12S, A146T 

2. PIK3CA MISSENSE E545K, H1047R, E542K, R88Q, H1047L, N345K, E726K, G118D 

3. NRAS MISSENSE Q61R, Q61K, Q13R, G12D, Q61L 

4. FBXW7 MISSENSE R465H, R505G, R465C 

5. BRAF MISSENSE V600E, V600M 

6. CDKN2A STOP GAINED R80*, R58* 

7. APC 

  

STOP GAINED R1450*, R876*, R1114* 

FRAMESHIFT T1556NFs3* 

8.  3'UTR PTEN 

  

MISSENSE R130Q, R130G 

FRAMESHIFT K267RFs*9, T319* 

STOP GAINED R233*, R130* 

9. TP53 

  

MISSENSE 

  

R175H, R248Q, R273C, R273H, R248W, R282W, Y220C, G245S, H179R, H193R, 

V157F, Y163C, R273L, C176F, I195T, R249S, E285K, C176Y 

STOP GAINED R213*, R196*, R342*, R306*, Q192* 

SPLICE REGION T125T 

10. ARID1A FRAMESHIFT D1850Tfs*33 

STOP GAINED R1989* 

11.  IDH1 MISSENSE R132H, R132C 

12. FGFR2 MISSENSE S252W 

13. FGFR3 MISSENSE S249C 

14. CTNN31 MISSENSE S37F 

15. EGFR MISSENSE L858R 

16.  GNAQ MISSENSE Q209F 

17. AKT1 MISSENSE E17K 

18. ERBB2 MISSENSE S310F 

19. GNA11 MISSENSE Q209L 

20. PPP2R1A MISSENSE P179R 

21.  BCOR MISSENSE N1459S 

22. HRAS MISSENSE Q61R 

23.  POLE MISSENSE P286R 

24.  SPECC1 FRAMESHIFT N303TFs*63 

25.  JAK1 FRAMESHIFT K860NFs*16 

26. RPL22 FRAMESHIFT K15RFs*5 

27. UBR5 FRAMESHIFT E2121KFs*28 

28. CTCF FRAMESHIFT T204NFs*26 

29. KMT2D FRAMESHIFT F2354LFs*17 

30. AKAP9 FRAMESHIFT K39RFs*17 
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contributes to pancreatic cancer development is 

unknown. Inactivation of several independent functions 

of BRCA2, such as remodeling of chromatin, 

transcriptional gene control, DNA damage repair, and 

cell development and also appears to provide a 

pathophysiological basis for the interrelation between 

BRCA2 mutations and pancreatic cancer [36]. 

 

3. Tools for mutational analysis 
3.1 Tools used for somatic mutations  

Several tools are available for detecting and analyzing 

somatic mutations (Table 2), users can choose the tool 

depending on the data type and user interface. 
 

3.1.1 Mutalisk [37] 

Mutalisk associates somatic mutations with genomic, 

transcriptional, and epigenomic features to understand 

better mutational processes that contribute to mutation 

generation. This web-based technology combines 

physical genome mapping with somatic mutation 

identification. The results are displayed using graphics 

and charts. Mutalisk only accepts VCF files as input. 

http//mutalisk.org/analyze.php 
 

3.1.2 VarMap [38] 

VarMap is a web-based tool for mapping chromosomal 

coordinates to canonical UniProt sequences and 

associated protein 3D structures, including validation 

checks and structural annotation. It can consider patient 

variant information, environmental context, and spatial 

protein distribution of genetic variants. 

https//bio.tools/VarMap 
 

3.1.3 Somatic sniper [39] 

Somatic sniper detects differences in single-nucleotide 

location between malignancy and normal samples. It 

uses the genotype likelihood model to compute the 

 
Table 2. List of tools for somatic mutation detection and analysis.  

S.No 
Name of 

tools 

Web-based/ lan-

guage-based 

Freely 

availa-

ble 

Feature Input data 
Links/source 

  

1. Broad GDAC 

firehouse [52] 

Web-based Yes Performs various automated analyses. Muta-

tional analyses, Correlation analyses, Differen-

tial expression analyses, and Pathway anal-

yses across all types of cancers. 

TCGA http//

gdac.broadinstitu

te. 

org/ 

  

2. cBioportal 

[73] 

Web-based Yes Allows correlation analyses for copy number 

alterations or methylation of genes. The portal 

also facilitates users to study gene(s) of inter-

est with access of Onco Printer and Mutation 

Mapper 

TCGA 

CCLE 

http//

cbioportal.org 

(Ceramiet al., 

2012) 

3. TCGA Clini-

cal explorer 

[52] 

Web-based yes Enables users to conclude relevant clinical 

information from TCGA data and allows them 

to translate the clinical data into the classifica-

tion of drivers genes, miRNA and proteins 

TCGA http//

genomepor-

tal.stan 

ford.edu/pan-

tcga/ 

Weinstein et al., 

2013) 

  

4. TCGA4U [74] Web-based yes Genomic alterations that occurred in the tu-

mor can be understood using this tool to 

study the relationship of genomic alterations 

with clinical data. 

TCGA http//

www.tcga4u.org, 

8888 

5. UCSC Xena 

[75] 

Web-based yes This tool performs the comparative analysis of 

tumor samples to normal samples to explore a 

gene expression whether it is up or down-

regulated in one or more cancer types. 

TCGA 

GDC 

ICGC 

GTEx 

TARGET 

TOIL 

http//

xena.ucsc.edu/

get 

ting-started/ 

6. Vanno [76] Web-based   Performs in-depth analysis of cancer-causing 

genome sequence alterations. Functional pre-

dictions and mutation landscapes of TCGA 

data can be derived. 

TCGA http//

cgts.cgu.edu.tw/ 

vanno 

http://mutalisk.org/analyze.php
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somatic score, the likelihood of genotype changes 

between tumor and normal samples. 

http//gmt.genome.wustl.edu/packages/somatic-sniper/ 
 

3.1.4 MutaNet [40] 

MutaNet was created to determine the impact of specific 

mutations on gene regulation and genome performance. 

MutaNet analyses antibiotic resistance gene alterations 

and their possible impact on antibiotic resistance in 

bacterial strains. MutaNeT   analyses mutations in various 

genomic areas statistically. The program also includes 

S.No 
Name of 

tools 

Web-based/ lan-

guage-based 

Freely 

availa-

ble 

Feature Input data 
Links/source 

  

7. MutEnricher 

[77] 

Python-based 

software 

yes Investigate both coding and non-

coding region for somatic mutation 

enrichment of the genome. 

TCGA and other 

cancer databases. 

https//

github.com/

asoltis/

MutEnricher 

8. MutaLisk [37] Web-based yes Perform the comparative analysis of 

somatic mutations along with physi-

cal mapping of the genome. 

Data uploaded in 

file format (vcf for-

mat) 

http//

mutalisk.org/

analyze.php 

9. VarMap [38] Web-based Yes Useful to map the genomic coordi-

nates to protein. 

The vcf file format is 

uploaded 

https//

www.ebi.ac.uk/

thornton-srv/

databases/cgi-

bin/VarSite/

GetPage.pl?

varmap=TRUE 

10. Somatic Snip-

er [39] 

Software Yes 

imple-

mented 

in C 

This tool identifies the single nucleo-

tide positions to differentiate between 

normal and tumours genes in the 

form of a somatic scores. 

 dbSNP http//

gmt.genome.wus

tl.edu/packages/

somatic-sniper/ 

11. MutaNet [40] Software 

Codes in Python 

yes Perform the statistical analysis of 

mutations in the genome. This tool 

enables to identify the impactful 

mutations. 

UniProt 

AureoWiki, 

PATRIC, Cytoscape, 

NCBI SRA, Regu-

lonDB, Regprecise 

https//

ser-

vice.bioinformati

k.uni-

saarland.de/

mutanet/ 

12. VarSim [41] Software 

Code in Java and 

Python 

yes Simulates and validates the different 

types of variants such as large struc-

tural variants, SNV, insertions and 

deletions. 

COSMIC 

dbSNP, DGV 

VCF file format 

  

http//

bioin-

form.github.io/

varsim/ 

13. SomVarIUS 

[42] 

Software 

written in Python 

2.7. 

yes Using high-throughput sequencing 

can identify a somatic mutation in 

unpaired tissue samples 

TCGA 

Takes sorted align-

ment files (.bam) as 

input and 

Output is in the 

variant call format 

(.vcf) 

https//

github.com/

kylessmith/

SomVarIUS 

14. MutaGene 

[43] 

Web-based 

Python Package 

yes Web-based tool for identification of 

mutations and mutational processes 

to analyse genes and calculate the 

DNA and protein stability. 

ICGC 

TCGA 

PCGP 

COSMIC(WGS) 

https//

www.ncbi.nlm.ni

h.gov/research/

mutagene/ 

15. VarScan 2  

[44] 

Command-line 

software 

written in Java 

yes Detects copy number alterations and 

other somatic mutations from exome 

data of normal and tumor pairs. 

  

 NGS data 

SOLiD, Life/PGM, 

Roche/454 

http//

dkoboldt.github.i

o/varscan/using-

varscan.html  

16. CHASM [46] Language-based 

tool 

yes This tool discriminates somatic mis-

sense mutations as cancer drivers.  

list of somatic mis-

sense mutations  

http//

wiki.chasmsoftw

are.org 

17. MutSig CV 

[47] 

Language-based 

MATLAB2013a 

yes Examines the mutational changes 

found in DNA sequencing and iden-

tifies mutated genes. 

  

MAF file https//

soft-

ware.broadinstitu

te.org/cancer/cga/

mutsig 

Table 2 (Continued) 

http://gmt.genome.wustl.edu/packages/somatic-sniper/
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mutations in a given gene regulatory network to assess 

their global impact. 

https//service.bioinformatik.uni-saarland.de/mutanet/ 
 

3.1.5 VarSim [41] 

VarSim can simulate and validate various variants, 

including single nucleotide variants, minor indels, and 

significant structural variants. It is a comprehensive, 

automated computing framework that supports parallel 

computing and numerous read simulators. VarSim is 

the only program that can mimic SNVs, minor indels, 

and various types of SVs. VarSim's completeness makes 

it a near match to real-world sequencing investigations. 

https//bioinform.github.io/varsim/ 
 

3.1.6 SomVarIUS [42] 

A computational method for detecting somatic 

mutations in unpaired tissue samples using high-

throughput sequencing data. SomVarIUS takes sorted 

alignment files (.bam) as input and produces predicted 

somatic mutations in the variant call format (.vcf) 

allowing it to be easily integrated into any conventional 

genome analysis pipeline. It also produces an extra 

output that includes all the information regarding the 

status of known cancer disease-associated mutations in 

samples.                   

https//github.com/kylessmith/SomVarIUS 
 

3.1.7 MutaGene [43] 

MutaGene can determine the context-dependent 

mutability of DNA locations and anticipated amino acid 

substitutions across the whole genome.  Mutability can be 

used as a background model to identify probable driver 

mutations, relating cancer genetics to phenotype. It aids 

in decoupling the relative roles of mutagenesis and 

selection in carcinogenesis. Mutations from cancer 

samples can be submitted in VCF format, Mutagene can 

recognize them, break them down into individual 

mutational signatures, and determine the closely related 

cancer kind, primary location, and cluster of samples 

with similar mutational profiles. 

https//www.ncbi.nlm.nih.gov/research/mutagene/ 
 

3.1.8 VarScan2 [44] 

VarScan is a platform-independent mutation caller for 

targeted mutations. VarScan 2 detects somatic mutations  

and copy number changes (CNAs) in neoplasia–normal 

pairs of exome data. It may help discover germline 

mutations, multiple sample variants, somatic mutations, 

and somatic copy number modifications. 

https//dkoboldt.github.io/varscan/using-varscan.html 
 

3.1.9 MuTect [45] 

MuTect was created by the Broad Institute for the 

accurate and reliable identification of somatic mutations 

in cancer genome next-generation sequencing data. It 

identifies somatic mutations using paired and normal 

and neoplasia cells as input. MuTect employs a variant 

detection statistic to determine whether a variation is 

more likely than a sequencing error. MuTect then 

searches for and removes six types of known sequencing 

artefacts MuTect has been frequently employed in 

cancer genomes research at the Broad Institute. 

https//institute.org/cancer/cga/mutect 
 

3.1.10 CHASM [46] 

CHASM (Cancer-Specific High Throughput Annotation 

of Somatic Mutations) to distinguish and focus on 

missense mutations most likely to cause beneficial 

modifications that increase the normal cell's uncontrolled 

growth property. CHASM employs a random classifier 

forest technique to distinguish between synthetically 

manufactured passenger and driver missense mutations. 

https//wiki.chasmsoftware.org 
 

3.1.11 MutSigCV [47] 

MutSig is an abbreviation for "mutational significance." 

MutSig analyses mutational changes discovered in DNA 

sequencing to identify genes that were changed more 

frequently than expected by chance, given the 

background mutation process. MutSigCV considers 

heterogeneity by employing patient-specific mutation 

frequencies and spectra and gene-specific mutation 

rates, expression, and replication times. 

https//software.broadinstitute.org/cancer/cga/mutsig 
 

3.2 Databases for mutation analyses 

Various databases are available for studying somatic 

mutation in different aspects, some of the important 

databases and case studies are discussed below (Table 

3). 
 

3.2.1 Mutfunc [48] 

Mutfunc is a mutational database that includes 

predictions based on a single nucleotide alteration in 
 

http://bioinform.github.io/varsim/
http://www.ncbi.nlm.nih.gov/research/mutagene/
http://www.ncbi.nlm.nih.gov/research/mutagene/
http://dkoboldt.github.io/varscan/using-varscan.html
http://www.broadinstitute.org/cancer/cga/mutect
http://wiki.chasmsoftware.org/
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three organisms (Humans, E. coli, Yeast). Protein 

stability, interaction interfaces, post-translational 

changes, and transcription factor binding sites are 

among the mechanisms investigated. 

https//www.mutfunc.com/ 
 

3.2.2 Cancer 3D [49] 

Cancer 3D is a free and open-source database that 

examines missense mutations in the context of protein 

structure in cancer. The Cancer3D database contains the 

findings of such investigations and data from The 

Cancer Genome Atlas (TCGA) and the Cancer Cell 

Line Encyclopedia (CCLE). The database also assists 

users in analyzing the distribution patterns of 

mutations and their association with                 changes in 

pharmacological activity using two algorithms e-Drug 

and e-Driver. 

https//www.cancer3d.org/search 

3.2.3 Intogene [50] 

Intogene collects and analyses somatic mutations in 

hundreds of neoplasia genomes to identify cancer-driver 

genes. Intogene database employs seven distinct 

methods for identifying cancer driver genes and 

compiles the output data of driver genes and a library of 

mutational features that can be utilized to explain and 

comprehend the mechanism of action. 

https//www.intogen.org/search 
 

3.2.4 TANRIC [51] 

TANRIC is an open-source site that analyses long non-

coding RNAs (lncRNA). These lncRNAs are crucial in 

cancer biology. TANRIC analyses lncRNAs in clinical 

and molecular data contexts using the expression 

patterns of cancer datasets from TCGA, CCLE, and 

other independent datasets. It is a useful tool for 

determining the function and clinical significance of 

 
Table 3. List of databases dedicated to mutation analyses.  

S.No Name of data-

bases 

Description Links 

1. Mutfunc [48] The mutational analysis includes stability, interaction, modification and TF bind-

ing sites. 

http//www.mutfunc.com/ 

2. Cancer3D [49] This database analyses the missense mutation regarding protein structure and 

helps the user to analyse the pattern of mutations. 

http//www.cancer3d.org/

search (TCGA 

CCLE) 

3. Intogene [50] Intogene analyses the somatic mutations from tumor genomes for cancer driver 

genes identification. It uses different methods for driver genes identification and 

compiles the output file for better exploration and analysis. 

https//www.intogen.org/

search (TCGA 

ICGC) 

4. TANRIC [51] TANRIC analysis includes the long non-coding RNAs in the context of clinical 

and molecular data. 

https//www.tanric.org  

(TCGA, CCLE) 

5 TCGA [52] TCGA has complete data on cancer and is stored in the GDC portal. The generat-

ed information is from a cancer patient and can be used for clinical significance, 

mutational analysis and gene expression profiling. 

https //www.cancer.gov/

about-nci/organization/ccg/

research/structural-

genomics/tcga 

  

6. Cosmic [53] Somatic mutation database. It has data from expert manual curation and genome-

wide screen. Several browsing tools and datasets are present for comparative 

analysis of cancer. 

https //cancer.sanger.ac.uk/

cosmic 

7. TCPA [54] Portal is used for the visualization and analysis of functional proteomics https//tcpaportal.org/tcpa/ 

(TCGA) 

8. GEO database 

[55] 

An NCBI database which has data from various high throughput methods, micro-

array experiments, next-generation sequencing etc. This database organised the 

data in a very informative form for easily accessible and better understanding. 

https//

www.ncbi.nlm.nih.gov/geo/ 

(NCBI) 

9. CMPD [78] CMPD contains more than 2 million genetic alterations, two major components of 

CMPD are, a web interface for the database SOLite and another for retrieval of 

mutated protein sequences. 

http//cgbc.cgu.edu.tw/cmpd 

  

10. ClinVar [56] ClinVar provides all the information regarding the relationship between the hu-

man variation and phenotype. 

https//

www.ncbi.nlm.nih.gov/

clinvar/ 

http://www.mutfunc.com/
http://www.cancer3d.org/search
http://www.intogen.org/search
http://www.intogen.org/search
http://www.intogen.org/search
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lncRNAs in cancer considerably facilitating lncRNA-

related biological discoveries and clinical features. 

https//www.tanric.org 
 

3.2.5 TCGA [52] 

The NCI and National Human Genome Research 

Institute collaborated on the Cancer Genome Atlas 

program. Over 12 years, the TCGA collected 

comprehensive cancer data from 11000 patients. The full 

cancer data set is processed and saved in the GDC portal. 

The information derived from the collected data 

includes clinical significance, molecular analysis, and 

gene expression profiling. 

https//www.cancer.gov/about-nci/organization/ccg/

research/structural-genomics/tcga 
 

3.2.6 COSMIC [53] 

Cancer somatic mutations catalogue. Cosmic is a 

repository for all somatic mutations associated with 

human cancer in a catalogue format with extensive 

analysis. There are two sorts of data in Cosmic expert 

manual curation and genome-wide screen data. Cosmic 

is organized by numerous discrete projects that present a 

variety of datasets and browsing tools for comparative 

research. 

https//cancer.sanger.ac.uk/cosmic 
 

3.2.7 TCPA [54] 

The Cancer Proteome Atlas is a comprehensive resource 

for accessing, visualization and analyzing cancer 

functional proteomics. This resource provides an 

idiosyncratic opportunity to verify the findings from 

TCGA data and identify model cell lines for functional 

investigation. 

https//tcpaportal.org/tcpa/ 
 

3.2.8 GEO Database [55] 

The GEO database is a freely accessible resource that 

distributes functional genomics microarray, next-

generation sequencing, and other forms of high 

throughput data. Platform, sample, series, datasets, and 

profiles are several types of geo data. GEO search 

analysis can be done in numerous ways, including using 

GEO datasets to search for data relevant to their 

research and GEO profiles. A Gene expression can be 

investigated and retrieved at this gene-level base or 

further analysis. 

https//www.ncbi.nlm.nih.gov/geo/ 
 

3.2.9 ClinVar [56] 

ClinVar is a freely accessible database that contains all 

information about the relationships between human 

variants and phenotypes. ClinVar reviews  submissions 

identifying variations detected in patient samples, 

claims about their clinical significance, submitter 

information, and supporting data. ClinVar enables us to 

comprehend the relationship between human variants 

and observed health states and the history of that 

interpretation. 

https//www.ncbi.nlm.nih.gov/clinvar/ 
 

3.3 Analysis of Mutations using COSMIC 

The Catalogue of Somatic Mutation (COSMIC) is a 

comprehensive and systematic database for studying 

the role of somatic mutations in human cancers. It lists 

various mutations, including gene fusions, copy number 

variations, non-coding, drug resistance, and coding 

mutations. It contains the library of cancer-causing 

genes, Cancer Gene Census (CGC) assembled by 

specialists from various medical reporting, 

pharmaceutical development, and laboratory research 

[53] and tools for analysis (Fig. 3). The most recent release    

contains around 6 million coding mutations from 1.4 

million samples from over 26,000 studies, this approach 

uses hidden Markov models to predict protein missense 

variations' functional, genetic, and phenotypic 

implications. Cosmic uses TCGA gene expression level 3 

data and methylation data from the ICGC portal for 

TCGA investigations. COSMIC provides for discovering 

new cancer treatment targets and biomarkers by 

providing detailed information on mutation 

distributions, mutational signature analyses and effects. 

Improve the collection of clinical trial cohorts. Identify 

driver mutations and associated genes to aid in patient 

diagnosis. 

For example, researchers in a study [57] used the 

COSMIC database, which contains somatic mutations 

from The Cancer Genome Atlas (TCGA) and several 

smaller-scale investigations. Researchers used multi-

label classification algorithms and        the Disease Ontology 

hierarchy to find cancer subtype-specific biomarkers. 

 

https://www.tanric.org/
http://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
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Saha et al. [21] used databases such as TCGA and 

COSMIC to perform mutation annotation and harmful 

property prediction analysis. They expected that TP53 

would be the most frequently altered gene (41 per cent) 

among the 114 reported somatic mutations, followed by 

KRAS, SMAD4, CTNNB1, and ERBB3. We uncovered a 

new TP53 hotspot mutation (p.A138V, in 17 per cent of 

all patients). 

 

3.4 Analysis of TCGA Data for Somatic Mutation 

TCGA, The Cancer Genome Atlas (https//

cancergenome.nih.gov/) has genome-wide data from 

over 30 cancer types and thousands of somatic 

mutations that advance the understanding of 

tumorigenesis. To identify somatic mutations, exome 

sequencing data is used that allows the detection of 

SNVs, Single amino acid substitutions. In addition to 

Mutational Analysis, TCGA is used for Survival 

Analysis, Correlation Analysis, Methylation Analysis, 

Exploration  of cancer drivers, Differential Analysis, and 

Pathway Analysis. In a study, Baek and Lee [58] 

analyzed whole-exome sequencing data of 134 PDAC 

patients. They discovered five genes, KRAS, CDKN2A, 

TTN, TP53, and KCNJ18, mutated in the beginning 

stages of tumorigenesis. In another latest study, Hwang 

et al. [59] used TCGA gene expression data for 

unsupervised clustering and identified three distinct 

molecular subtypes belonging to three different 

pathways and were also able to validate them in another 

cohort using each subtype-specific gene (200 were 

chosen). Various powerful yet easy-to-use tools (Fig. 4) 

are also provided to analyze and visualize TCGA data, 

such as The Broad GDAC portal, TCGA Clinical 

Explorer, Cancer3D, TCGA4U, and UCSC Xena and 

Vanno, which allow for performing mutation analysis. 

 

4. Current treatment and novel opportunities 
4.1 Anti-RAS therapy 

Surgery followed by adjuvant chemotherapy is the only 

possible treatment option for PDAC, but only 15–20 per 

cent of patients are suitable for surgery [60]. The only 

targeted treatment for PDAC is a combination of 

gemcitabine and an epidermal growth factor receptor 

(EGFR) inhibitor, which can improve life by a 

statistically significant but clinically unsatisfactory 

twelve days compared to gemcitabine alone. Patients 

with advanced pancreatic          cancer are treated with 

multiagent combination chemotherapy, such as 

irinotecan/oxaliplatin/5- fluorouracil or nab-paclitaxel/

gemcitabine, although their median overall survival is > 

a year. In PDAC, therapeutic methods have been mainly 

ineffective, with no treatment prolonging life beyond one 

year following diagnosis. In 93 per cent of pancreatic 

cancers, KRAS mutations are found. There are additional 

opportunities for therapeutics targeting individual 

mutant KRAS isoforms, particularly with small 

molecule inhibitors of KRAS G12C. KRAS testing will be 

required to determine the particular KRAS mutation 

present [61].  

Figure 3: Overview of tools and projects available for data 

analysis and their applications.  

Figure 4: Tools for better visualization and interpretation of 

multidimensional data are available from TCGA.  

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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4.2 KRAS inhibitors 

The development of KRAS inhibitors has proven 

difficult due to various reasons. Competitive inhibitors 

have a very high affinity for GTP. After binding to the 

GTP binding site that cannot be overtaken, inhibitors of 

allosteric groups have been challenging to create due to 

the lack of pockets for drug binding on the KRAS surface 

[62].  
 

4.3 G12C inhibitors 

KRAS G12C inhibitors are present in only 1% of 

pancreatic cancer cases, which is very uncommon 

[63,64]. In the 12th position, glycine-to-cysteine 

mutation triggered the KRAS oncoprotein, increasing 

tumor cell cycle progression. The mutated cysteine is 

located near a switch II pocket (P2). A small molecule 

known as Sotorasib (AMG 510) inhibits KRAS G12C in a 

reversible and specific manner via a unique interaction 

with the P2 pocket [65]. A study shows that G12C 

inhibitors can bind with a recently discovered P2 

surface pocket on KRAS and covalently bind to the 

mutant G12C protein's reactive cysteine residue, 

according to a study. Another inhibitor of KRAS G12C, 

adagrasib (MRTX849), had a confirmed response in one 

patient with pancreatic cancer [66]. 
 

4.4 G12D inhibitors 

RAS-selective inhibitor RMC-6236 binds to cyclophilin A, 

a chaperone protein, and constructs a tri-complex with 

the specific RAS protein. Multiple RAS mutants, notably 

KRAS G12V and   KRAS G12D, have their signaling 

inhibited in their GTP-bound conformations [67]. KRAS 

G12D inhibitors are in preclinical development. One 

direct inhibitor, which is MRTX1133, is currently 

undergoing research trials. 
 

4.5 SOS inhibitors 

SOS1 is a Guanine exchange factor that converts GDP to 

GTP to activate KRAS and GTPase- activating proteins. 

KRAS signaling is controlled by enzymes that catalyze 

the intrinsic hydrolysis of GTP back to GDP to 

inactivate KRAS. The guanine exchange factor SOS1 

catalyzes the conversion of GDP to GTP to trigger KRAS 

and degrade the interaction of the SOS1-KRAS complex, 

preventing KRAS from storing GTP. Treatment with a 

MEK inhibitor reduces SOS1 phosphorylation by ERK 

and relieves negative response to SOS1, allowing SOS1-

mediated feedback loops to restore RAS-mediated 

signaling. New small molecule SOS1 inhibitors impair 

SOS1-KRAS binding in various KRAS mutations. The 

SOS1 inhibitor BI-3406 reduced GTP-bound RAS and 

reduced proliferation in practically all KRAS codon 12 

and 13 mutants examined. It worked in tandem with 

MEK inhibitors to prevent feedback reactivation [65].  
 

4.6 Immunotherapy-based treatment strategies for sporadic 

PDAC 

The combination of immunotherapy and chemotherapy 

has a considerable impact on PDAC. Several positive 

prediction markers for immune checkpoint inhibitors 

(ICIs) have been reported in recent studies, including an 

increased level of MSI-H, overexpression of PD-L1, 

increased TMB, and gene mutations. SMAD4 and TSC2 

mutations were reported in stage 4 pancreatic cancer 

treated with immunotherapy. The patient responded 

partially to treatment, with the lesions diminishing and 

gradually decreasing. Responses of this magnitude are 

extremely rare in metastatic pancreatic cancer [68].  
 

After surgical resection recurrence of pancreatic cancer 

still occurs in a high percentage of patients within the 

first two years. Using immunotherapy in conjunction 

with other treatments like chemotherapy and/or 

radiation in both neoadjuvant and adjuvant settings has 

improved the survival rate of the patients [69]. In the 

adjuvant trial, a phase II multi-institutional study that 

examined the use of algenpantucel-L immunotherapy in 

conjunction with chemotherapy and chemoradiotherapy 

produced 62% disease-free survival and 86% overall 

survival after 12 months. Although the survival of 

patients did not improve at the time of phase III 

IMPRESS clinical trial [70, 71]. In a recent trial, 30 

patients in Japan received the OCV-C01 multi-peptide 

vaccine from the KIF20A protein, which contains 

peptides from the VEGFR1, VEGFR2, and the vascular 

endothelial growth factor receptor (VEGFR)1. Results 

demonstrated that 58.6% of patients had cytotoxic 

lymphocyte responses against KIF20A. In the realm of 

pancreatic cancer immunotherapy-based treatment, 

encouraging outcomes have been seen. However, the 

success of the therapy will depend on the prediction of 
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further combinatorial trials aimed at various mutations 

[72]. 
 

5. Discussion 
PDAC is one the most lethal cancer with a terrible 

prognosis. Currently, no screening measures can detect 

cancer in its early stages which is why its poor overall 

survival. Individual characteristics lifestyle diabetes and 

other diseases are some risk factors that provide some 

indication for screening and etiological prevention. 

Surgical removal of pancreatic cancer is often difficult 

due to the organ's location, therefore, studying 

mutations and targeting them with combination drug 

therapies becomes crucial. The four significant most 

significant factors to consider when researching the 

disease are the four significant mutant driver genes 

(KRAS, TP53, CDKN2A, and SMAD4) and their 

biochemical pathways pathway, PI3K/AKT signaling 

pathway, Janus kinase and activator of transcription 

(JAK/STAT), and MAPK pathways are crucial pathways 

involved in pancreatic cancer. Current treatment 

includes chemo-drugs such as gemcitabine, Folfirinox, 

and 5-Fluorouracil (5-FU). These drugs are used in 

combination with other anticancer drugs. The 

advancement of sequencing technologies and tumor 

genetic profiling have reported various genes, 

pathways, potential prognostic markers, and mutations 

involved in pancreatic cancer that have helped in 

providing detailed insights into the mechanism of onset 

of the disease. However, despite these efforts, pancreatic 

cancer remains unmanageable. Novel screening and 

diagnostic methods for detecting resectable PDAC early 

on, neoadjuvant therapy to increase the number of 

patients eligible for curative resection. Somatic mutation 

detection and adjuvant therapy to improve 

postoperative survival in curative resections and 

palliative disease patients will overcome the challenges 

in PDAC management. Somatic mutations play a 

significant role in the development and progression of 

cancer disease; therefore, mutational profiling is a crucial 

step in therapeutic decision making. 

 

6. Conclusions 
In this review, a detailed account of somatic mutation 

and its different types,  along with top mutations in 

PDAC and the characterization of driver genes has been 

studied in the present study. Numerous tools, variant 

analysis pipelines, and databases for analyzing mutation 

treatment options and new possibilities for PDAC are 

also discussed. Studying somatic mutations in pancreatic 

cancer can not only help strengthen the disease 

mechanism but will also help in dictating the treatment 

possibilities. 
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