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1. Introduction 

Curcuma longa L is a plant of the Zingiberaceae family, 

whose rhizome can be used to obtain its essential oil, 

which is composed of mainly ar-turmerone,  and -

zingiberene [1-2]. Its essential oil has antifungal 

properties, as well as the ability to inhibit mycotoxins 

from certain fungi, making it possible to use it as a 

food preservative [3-5]. Another relevant property is 

its antioxidant capacity, which can be applied to 

reduce the rancidity of foods [6]. The literature also 

indicates the promising anticancer capacity of ar-

turmerone compound [7].  
 

 
 

To obtain the volatile extract, techniques such as 

steam distillation are traditionally used, due to their 

low cost. The advantage of this technique is the 

immiscibility between the organic compounds and 

water, facilitating the removal of the product,  

 

 

 

 

however, the high temperatures used can generate 

changes in the oil obtained [8-10]. Another technique 

for obtaining the volatile extract is the supercritical 

extraction using CO2, which preserves the properties 

of thermosensitive compounds, performing their 

extraction with minimal damage, in addition to the 

easy removal of the solvent at the end of the extraction. 

However, it is still a technique with a high 

implementation cost due to the high pressures used 

[11-12]. 
 

The different extraction techniques available generate 

products with differences in their chemical 

composition, making it necessary to determine the 

different compounds obtained from each type of 

extraction [13]. For this, it is necessary to use 

multivariate statistical analysis, such as, for example, 
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the principal components analysis, which allows an 

analysis that would not be easily achieved with the 

simple study of the data, due to its ability to reduce 

variables. Thus, it is possible to verify the variation in 

the composition, according to the extraction method 

and the condition used. 
 

Due to the lack of technology associated with the 

essential oils industry, it is necessary to include 

scientific data to meet this demand. Therefore, the 

adjustment of mathematical models that adequately 

represent the yield versus time extraction curve, as 

well as obtaining mass transfer parameters, is an 

important step for the proper scale-up of extraction 

processes. Among the different types of models used 

to describe extraction processes, a first-order model 

can be highlighted, extensively used in adsorption 

processes [14], diffusion models [15], and models that 

describe differential balances for each phase [16].  
 

The objective of this work is to carry out a comparison 

between the steam distillation technique and 

supercritical extraction, evaluating in terms of yield 

and composition (variation according to the technique 

and condition employed), as well as through 

mathematical modeling of the processes to analyze 

the representativeness of the model for each 

extraction method. 
 
 

 

2. Materials and methods 

2.1 Plant preparation 

The plant material used in this study is composed of 

turmeric rhizomes grown in Morrinhos do Sul and 

purchased in Porto Alegre – Rio Grande do Sul, Brazil 

(-29.30, -49.92).  
 
 

The turmeric rhizomes in natura were cut into 

irregular pieces, without removing the peel. The wet 

plant was ground using a knife mill and a sample was 

collected to quantify the moisture, using a 

thermogravimetric balance at 60 °C. The fresh 

grounded material was then used to carry out the 

experiments.  
 

2.2 Extraction with supercritical fluid 

The supercritical fluid extractions (SFE) were carried 

out in a pilot scale equipment, installed in the 

Laboratory of Unit Operations (LOPE) of the 

Polytechnic School – PUCRS. The system is 

represented in a schematic diagram in Fig. 1. The pilot 

unit has a high-pressure pump (Maximator-G60) for 

carbon dioxide (P1), a CO2 storage cylinder (C1), two 

preheaters (HE1, HE2), a system for measuring the 

CO2 flow and two separation vessels (VS1, VS2), 

which are made of glass (Ilmabol TGI Boron 3.3). The 

extractions with supercritical fluid were carried out in 

an extraction container (Waters) with a capacity of 500 

mL, diameter of 6.3 cm, and height of 19 cm [17]. The 

investigated conditions were determined according to 

Scopel et al. [18] and Garcez et al. [19], in order to 

obtain the volatile extracts using the SFE 

methodology: four different pressures (80, 90, 100, 

and 110 bar) at 40 °C, with 1000 g.h-1 of CO2 flow and 

0.2 kg of the rhizome. Bearing in mind that the 

composition of the essential oil of Curcuma longa has 

in its majority composition polar compounds [20-22], 

the wet plant was used in the extractions with 

supercritical CO2, as the presence of water would 

confer polarity to the solvent, favoring the extraction 

of these major components. This procedure is similar 

to the one used for caffeine extraction from coffee by 

humidifying the grain [23]. 

 
 

 
 

Figure 1. Diagram of the supercritical extraction pilot unit: 

C–CO2 cylinder, HE – heat exchanger, CV– check valve, P1–

CO2 high pressure pump, EV–extraction vessel, T– 

temperature transmitter, P–pressure transmitter, VS– 

separation vessel, MFT–mass flow transmitter, SV– stop 

valve. 
 

 

For the highest yield condition, the extract yield 

versus time curve was constructed in triplicate, for 

subsequent mathematical modeling. The extracts 

were collected with a time interval of 10 minutes, 

measuring mass at each time interval, until the plant 

was exhausted, that is until there was no mass 

increase (constant mass was considered after three 

consecutive measurements). The yield was obtained 

by dividing the extracted mass by the plant mass used 

in the extraction. 
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2.3 Steam distillation 

The extractions via steam distillation (SD) were 

carried out in a pilot scale equipment, located in the 

Laboratory of Unit Operations (LOPE) of the 

Polytechnic School–PUCRS. The system is 

represented in a schematic diagram, as shown in Fig. 

2. The equipment has a boiler (B1) with a capacity of 

20 L of solvent (water), the energy source is an 

electrical resistance of 2 kW, it has level sensors 

(upper and lower) and pressure and temperature 

measurement. The extraction vessel (EV1) has a 

capacity of 10 L of useful volume, as well as 

temperature and pressure sensors, is 31.3 cm high and 

19.3 cm in diameter. The system also has a 

multitubular shell-tube condenser cooled with water 

close to 1°C, using a thermostatic bath [24]. 
 
 
 

 
 

 

Figure 2. Steam distillation pilot plant schematic: B – boiler, 

EV – extraction vessel, C – condenser, S – separator, T – 

temperature transmitter, P – pressure transmitter, MF – flow 

meter, N – flow measurement level. 
 

 

The steam distillation process was carried out with 

1000 g of the prepared plant. The extractions were 

carried out at three different absolute pressures (1, 2, 

and 3 bar), with the aim of analyzing the effect on the 

yield and composition of the essential oil. The 

procedure was performed in triplicate, and for the 

highest yield condition, the experimental yield curve 

versus the extraction time was constructed, 

measuring the oil volume for each 5 minutes’ interval. 

 

The specific mass of the essential oil was determined 

by measuring the mass of 1 mL of the oil, using an 

analytical balance (Mars AW220 e = ± 0.0001g). This 

procedure was performed in triplicate. Plant density 

and porosity were determined using a pycnometer 

(Quantachrome MVP-6DL).  
 
 

2.4 Chromatographic Analysis via GC-MS 

Turmeric extracts were dehydrated with anhydrous  

sodium sulfate (Na2SO4 - Synth) and diluted in 

cyclohexane (1: 2) (Merck). Chemical composition was 

determined using a gas chromatograph equipped 

with a mass spectrometer (Hewlett Packard and 

Agilent model 7890A CG-EM and mass detector 

5975C). The carrier gas was helium (0.8 mL.min-1), the 

injector temperature was 250 °C, and the injected 

volume was 0.2 L, using split mode with a division 

rate of 1:55. The capillary column was HP-5MS 

(Hewlett Packard and Agilent, 5% phenyl methyl 

siloxane, 30 m 250 mm 0.25 mm). The temperature 

setting was 60 °C (8 min), 60 °C-180 °C, 3 °C min-1, 

180 °C (1 min), 180 °C-250 °C, 20 °C min-1, 250 °C (10 

min). 
 

Components were identified by comparing their 

Retention Index (RI) on the column, determined in 

relation to a homologous series of n-alkanes (C8-C20), 

with those of pure standards or reported in the 

literature. A comparison of the mass spectra of the 

compounds with the spectra stored in the GC-MS 

database [25] was also performed. 
 

2.5 Principal Component Analysis (PCA) 

The comparative statistical analysis of the 

composition of the products obtained was carried out 

through the analysis of principal components which 

was realized using the compounds percentages 

obtained through gas chromatography, for each of the 

techniques and conditions. The PCA was executed in 

the Minitab® software, where the data were 

implemented in the form of a table, where the lines 

were the percentage of the components and the 

columns were the pressure conditions under which 

the extractions were performed, the calculation was 

performed from the covariance of data. 
 

2.6 Mathematical Modeling 

The model used in this work was based on the model 

developed by Reverchon [16]. The model consists of a 

one-dimensional mass balance for the extract, 

assuming a linear behavior for the solid-fluid phase 

equilibrium. Two independent variables, time (t) and 

fixed bed height (z) were considered only, and the 

radial dispersion along the column is considered 

insignificant, for these assumptions the model was 

developed. The mass balance is given below in 

Equations 1 and 2. 
 
 

Fluid phase mass balance: 
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𝜕𝐶(𝑧, 𝑡)

𝜕𝑡
= −𝜐

𝜕𝐶(𝑧, 𝑡)

𝜕𝑧

−
1 − 𝜀

𝜀
𝜌𝑠

𝜕𝑞(𝑧, 𝑡)

𝜕𝑡
 

         (1) 

 

Mass balance in the solid phase: 
𝜕𝑞(𝑧, 𝑡)

𝜕𝑡
= −𝑘𝑇𝑀[𝑞(𝑧, 𝑡) − 𝐾 ∙ 𝐶(𝑧, 𝑡)] 

         (2) 
 

The concentration of the essential oil in the vapor 

phase is given by the function 𝐶(𝑧, 𝑡)   and the 

concentration in the aromatic plant is described by the 

function 𝑞(𝑧, 𝑡) . Where υ is the interstitial fluid 

velocity; ε is the porosity of the bed; k𝑇𝑀 is the internal 

mass transfer coefficient; 𝜌𝑠 is the specific mass of the 

plant and K is the equilibrium constant between 

phases. The model also considers some initial and 

boundary conditions 𝑞(z, 0) = q0  and 𝐶(𝑧, 0) = 0 , q0  

is defined by the total amount of extract contained in 

the solid phase and 𝐶(𝑧, 0) = 0 as a boundary 

condition. The linear comportment for solid-fluid 

phase equilibrium is expressed by 𝑞∗(𝑧, 𝑡) =  𝐾 ∙

𝐶(𝑧, 𝑡). 
 

 

The described models were programmed in the 

EMSO software, where the parameters of each model 

were estimated by adjusting the experimental data of 

the extraction curve by the least squares method, 

using the Nelder-Mead algorithm [26].  
 
 

3. Results and discussion 
The average yield obtained from the experimental 

data acquired through the extractions is shown in 

Table 1 in essential oil grams per 100 grams of plant. 

The average specific mass of the essential oil obtained 

was ρoil = 890 kg.m-3, the plant specific mass 

determined using the pycnometer was ρplant = 1087 

kg.m-3, a moisture of 80.4% were determined and the 

plant particle diameter was equal to 1.45 mm. 
 

3.1 Analysis of the turmeric essential oil. 

The primary constituents of turmeric essential 

obtained via SFE were -zingiberene (22.78-

10.16 %),-turmerone (24.12-11.38 %) and ar-

turmerone (22.48-10.8 %). These results are in 

accordance with what was found by Carvalho et al. 

[27] but with lower content of β-turmerone and α-

turmerone. These authors did not report the higher 

levels of α-zingiberene found in this work.  The SD 

method showed that the major compounds were -

zingiberene (35.42-23.11 %), -turmerone (24.52-

20.24 %) and -sesquiphelandrene (17.95-13.21 %). 

Table 1. Yield obtained through SFE and SD 
 

Extraction 

method 

Pressure (bar) Global yield 

(gOE/100g plant) 

SDa 

1 

2 

3 

0.78 

0.83 

0.86 

SFEb 

80 

90 

100 

110 

0.07 

0.89 

0.21 

0.04 

a = saturated water vapor, b = fluid temperature 40 °C 
 

This is consistent with the results of Hwang et al. [28], 

although with lower levels of ar-turmerone. These 

variations could be attributed to geographic location, 

genetic and environmental factors, as reviewed in 

Ibáñez [29]. Table 2 shows the compounds found in 

the essential oil obtained using different techniques 

and conditions, with their respective retention index 

and area percentage. The major compounds for each 

extraction method are highlighted. 
 
 

3.2 Principal Component Analysis 

From the PCA, it was possible to observe that five 

components stood out from the others, -turmerone, 

ar-turmerone, -turmerone, -sesquiphelandrene, 

and -zingiberene as shown in Fig. 3.  
 

In Fig. 3, it is possible to observe the behavior of the 

composition of Curcuma longa essential oil related to 

the pressure variation and the extraction method, it 

can be noted the formation of two distinct groups. The 

first one demonstrates higher scores on the first 

component, with zero or negative scores on the 

second component. The second group, on the other 

hand, exhibits higher scores on the second component, 

but lower scores on the first component. This division 

of groups is attributed to the similarity of the area 

percentage of the components identified by GC-MS. It 

was possible to visualize that there was difference in 

the composition due to the different pressures used in 

the steam extraction. turmerone and - 

sesquiphelandrene content, while at 1 and 2 bar the 

composition was similar. 
 

For the supercritical extraction technique, it was 

possible to observe a variation in the composition 

obtained between the different pressures. The 

similarity between the pressures of 80 and 110 bar was 

observed, while 100 and 90 bar pressure composition  
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Table 2. Chemical composition of Curcuma longa essential oil obtained by supercritical extraction and steam distillation 

under different extraction conditions. 
 

Compoundsa RIb Steam Distillation Area (%)c     Supercritical Fluid Extraction  Area (%)c 

1 bar 2 bar 3 bar 80 bar   90 bar 100 bar 110 bar 

1,8-Cineole 1028 - 0.56 - 0.13  - - - 

Terpinolene 1085 1.28 1.13 - 0.07  - - - 

3Z-hexenilmetil carbonate 1100 - - - 0.03  - - - 

2-Nonanol 1101 - - - 0.09  - - - 

Terpinen-4-ol 1174 - - - 0.05  - - - 

1,4-Cymene-8-ol 1184 - - - 0.16  - - - 

α-Terpineol 1188 - - - 0.27  - - - 

2-Decanol 1202 - - - 0.02  - - - 

2-Undecanol 1301 - - - 0.03  - - - 

δ-Elemene 1335 - - - 0.03  - - - 

Piperitenone 1338 - - - 0.13  - - - 

β-Elemene 1389 - 0.48 - 0.12  - - 0.07 

Sesquitujene 1404 - - - 0.09  - - - 

E-Caryophyllene 1415 - 0.34  0.14  - - 0.08 

-Elemene 1431 - - - 0.03  - - - 

E-α-Bergamotene 1433 - - - 0.04  - - - 

E-β-Farnesene 1456 - 0.54 - -  - 0.41 - 

Sesquisabinene 1456 - - - -  - - 0.23 

Z-β-Farnesene 1456 - - - 0.32  - - - 

-Amorphene 1477 - - - -  - - 0.08 

Germacrene D 1477 - 0.42 - 0.09  - - - 

ar-Curcumene 1481 4.02 3.6 5.17 1.49  1.45 3.31 1.79 

α-Zingiberene 1494 25.26 23.11 35.42 11.37  17.44 22.78 10.16 

β-Curcumene 1502 - - - 0.09  - - - 

β-Bisabolene 1507 2.6 2.53 - 1.41  1.63 2.52 1.31 

β-Sesquiphelandrene 1522 14.41 13.21 17.95 6.65  8.85 12.58 6.41 

E--Bisabolene 1530 - 0.27 - 0.19  - - 0.12 

E-iso--Bisabolene 1534 - - - 0.09  - - - 

-Cuprenene 1543 - - - 0.05  - - - 

Germacrene B 1553 - 0.49 - -  - 0.55 - 

E-Nerolidol 1563 - - - 0.06  - - 0.04 

ar-Tumerol 1579 - 0.66 - 0.26  - - 0.38 

E-β-Elemenone 1602 - - - 0.36  - - 0.49 

β-Atlantol 1698 1.08 2.22 -   - - - 

ar-Turmerone 1664 11.33 9.76 10.48 22.07  10.8 12.43 22.48 

-Turmeroned 1673 24.00 20.24 24.52 5.32  24.12 18.57 11.38 

Helifolenol A 1687 - - - 0.12  - - - 

Germacrone 1692 4.36 4.52  2.77  3.36 2.86 3.76 

-Turmeroned 1703 8.25 7.11 6.45 7.67  8.29 7.66 8.98 

Curcuphenol 1719 - - - 0.25  - - 0.44 

Curcumenol 1727 - - - 0.85  - - 0.75 

6S,7R-Bisabolone 1745 1.53 1.73 - 1.84  1.6 - 2.27 

6R,7R-Bisabolone 1754 - - - -  - 1.31 - 

β-Bisabolenal 1770 - - - 0.56  - - - 

E-α-Atlantone 1775 0.83 1.38  0.21  - - 0.25 

Hexadecanoic acid 1973 - - - 0.05  - - - 

dehydro-Juvibione 1997 - - - 0.08  - - - 

Total identified - 98.95 94.3 100 65.65   77.54 84.98 71.47 

aCompounds identified by comparing their mass spectrum and retention index with the Adams library (2007). bRI retention index calculated 

for a series of alkanes (C8-C20). cPercentage area of each peak, according to the response of the mass detector, in relation to the total area 

of the chromatogram, considering a response factor equal to 1 for all components. dCompounds identified by comparing their mass 

spectrum and retention index based on NIST library (2005). 
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come closer to the SD method but with a lower first 

component score, mainly due to the lower α-

zingiberene and -sesquiphelandrene content. The 

first and second components explain 98.3% of the data 

variance. 

 

 
 

Figure 3. Variation in the behavior of turmeric essential oil, 

in relation to different pressures and extraction methods. 
 

SD extract presented higher concentrations of α-

zingiberene, which can indicate that its extract could 

be more effective in medicine in the treatment of some 

types of human cancer (liver [30], colon [31], cervical, 

and breast cancers and leukemia [32]) as well as an 

antibacterial agent for food industry [33]. The α-

zingiberene compound is also potential insecticide 

and can induce resistance to diseases and pests in 

tomatoes [34-35]. The SFE extract presented a higher 

concentration of ar-turmerone which has a promising 

anticancer capacity, as cited before [7]. 
 

3.3 Mathematical Modeling 

According to the proposed methodology, 

mathematical modeling was carried out and the 

results can be seen in Fig. 4. The modeling was 

realized for the highest yield conditions (3 bar for SD 

and 90 bar for SFE). The estimated values for the 

parameters, together with the coefficient of 

determination (R2) for each method are presented in 

Table 3. The standard deviation for the yield of SD 

curve was ± 0.1194% and for the SFE it was ± 0.1438%.   
 

Table 3. Parameters obtained through modeling of the 

experimental data for SD and SFE methods. 
 

Method K104 m³.kg-1 kTM104. s-1 R2 

SFE 12.403 1.7915 0.9931 

SD – Stage 1 0.9975 1.0671 0.9739 

SD – Stage 2 1.1213 1.3905 0.9888 
 

 
 

Figure 4. Curves for SFE (90 bar and 313.15 K) and SD (3 bar 

and 406.15 K) and mathematical modeling. 
 

The best yield for supercritical extraction was at the 

condition of 90 bar and 40 °C. This is a condition close 

to the critical point where it is known that carbon 

dioxide has a higher density, which increases the 

solvent solubility. With the increase in pressure, 

maintaining a fixed temperature of 40 °C, it is known 

that the CO2 density and diffusivity compete with 

each other. As the diffusivity decreases, the density 

increases, as both affect the solvation capacity of 

supercritical carbon dioxide, it passes through a 

maximum condition depending on which variable is 

prevailing in the considered condition [36-37]. 
 

From the SD extraction curve, it was possible to 

identify the presence of two different regimes. The 

first regime was identified as a curve of low slope 

followed by the second regime that ends with the 

depletion of the plant. This difference in mass transfer 

between these different periods for extraction can be 

explained by a change in the type of solute being 

removed, there are volatile compounds that are 

preferentially removed in an initial step. Afterwards, 

the matrix continues to provide extract mass, but this 

last is composed of different chemical species. With 

this, the mass balance for two pseudo components 

was considered, one leaving in the first stage and the 

other in the second stage. Thus, it was necessary to 

estimate the mass transfer parameters for each of 

these regimes. The regime change time was estimated 

based on the graphical analysis, occurring within 140 

minutes. 
 

The coefficient of determination corresponds to the 

adherence of the model to the experimental data. For 
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both extractions, the coefficient indicates that the 

model is adequate to fit the experimental data. 
 

The K parameter is the equilibrium constant between 

the phases, which proved to be greater for the SFE, 

indicating that the equilibrium is predominant in the 

extraction compared to the SD, which obtained a 

lower order equilibrium constant. The kTM 

parameter, which indicates mass transfer, had the 

same magnitude for both techniques. It is also worth 

mentioning that the SFE method could achieve 0.8% 

of yield way faster than SD method, being more time 

efficient than SD. The parameters obtained are in the 

expected order of magnitude, for SFE and SD [38]. 
 

4. Conclusions 

It was possible to evaluate the performance of the SD 

technique and SFE, with higher yields being obtained 

at pressures of 3 bar and 90 bar, respectively. The 

chromatographic analysis of the extracts showed α-

zingiberene as the major compound for the SD 

technique and ar-turmerone and -turmerone for the 

SFE. From the PCA it was observed that the pressure 

did not significantly influence the composition of the 

essential oil for the SD. For the SFE, a similarity was 

identified between the composition of 90 bar and 110 

bar, with the influence of the pressure on the extract 

composition. The mathematical modeling of the 

processes was carried out and the relevant parameters 

were obtained, with the SD technique composed of 

two periods. It was observed that the SFE was greater 

influenced by the process equilibrium in relation to 

the SD technique. It is possible to indicate that SD 

extract is more indicated for applications that need α-

zingiberene and SFE extract for uses that request 

higher concentrations of ar-turmerone. The data 

obtained from the mathematical modeling support for 

the studies of change from a pilot scale to an industrial 

scale. In future work, the chemical composition of the 

extract will be monitored throughout the extraction, 

in order to validate the hypothesis of extraction of two 

types of solute and to help determine the parameters 

of the mass transfer model used for the steam 

distillation. 
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