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1. Introduction 
 

Functional analysis as an independent mathematical 

discipline started at the turn of the 19th century and 

was finally established in the 1920s and 1930s, on the 

one hand under the influence of the study of specific 

classes of linear operators integral operators and 

integral equations connected with them and on the 

other hand under the influence of the purely intrinsic 

development of modern mathematics with its desire 

to generalize and thus to clarify the true nature of 

some regular behavior. Quantum mechanics also 

had a great influence on the development of 

functional analysis, since its basic concepts, for 

example, energy, turned out to be linear operators 

(which physicists at first rather loosely interpreted as 

infinite-dimensional matrices) on infinite-

dimensional spaces. Recent studies of the sections of  

 

 

 
 

 

functional analysis we refer [1-13].  

Orthogonality is one of the branches of functional 

analysis. Many authors have developed several 

notions of orthogonality in a normed space. For 

example, the following definitions of Pythagorean, 

Isosceles, and the Birkhoff-James orthogonality in a 

real normed space (X,‖∙‖) are known:  
 

P- Orthogonality:  𝑥 is P- orthogonality to 𝑦 (denoted 

by   𝑥 ⊥p 𝑦) if only if: 

‖𝑥 + 𝑦‖2 = ‖𝑥‖2 + ‖𝑦‖2.                                           (1.1)                                                             
 

I-Orthogonality:  𝑥  is I- orthogonality to 𝑦  (denoted 

by   𝑥 ⊥I 𝑦) if only if: 

‖𝑥 + 𝑦‖ = ‖𝑥 − 𝑦‖.                                                     (1.2)                                                                                                                 

BJ-Orthogonality:  𝑥  is  BJ- orthogonality to 𝑦 

(denoted by   𝑥 ⊥BJ 𝑦) if only if: 

‖𝑥 + 𝛼𝑦‖ ≥ ‖𝑥‖ for every  𝛼 ∈ ℝ.        
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2. Preliminary  

We recall some preliminary definitions related to our 

findings as presented here below: 
 

Definition 2.1. ( 𝑛–normed spaces) [14] Let 𝑋 be a real 

vector space of dim ≥  𝑛.  An  𝑛– norm on 𝑋  is a 

mapping ‖∙, … ,∙‖ ∶  𝑋𝑛 → ℝ,  which satisfies the 

following four conditions:  
 

𝑛N 1:  ‖𝑥1, … , 𝑥𝑛‖ = 0,   if and only if  𝑥1, … , 𝑥𝑛   are 

linearly dependent,  

𝑛 N 2:  ‖𝑥1, … , 𝑥𝑛‖ = ‖𝑥𝑖1
, … , 𝑥𝑖𝑛

‖,   for every 

permutation (𝑖1, … 𝑖𝑛)  of  (1, … , 𝑛),                    

𝑛N 3:  ‖𝛼𝑥1, … , 𝑥𝑛‖ = |𝛼|‖𝑥1, … , 𝑥𝑛‖  for  𝛼 ∈ ℝ,                              

𝑛 N 4:  ‖𝑥1 + �́�1, 𝑥2, … , 𝑥𝑛‖ ≤ ‖𝑥1, 𝑥2, … , 𝑥𝑛‖ +

‖�́�1, 𝑥2, … , 𝑥𝑛‖,  for all  𝑥1, �́�1, 𝑥2, … , 𝑥𝑛 ∈ 𝑋.   The pair  

(𝑋, ‖∙, … ,∙‖) is called  an  𝑛–normed spaces. 
 

 

Definition 2.2. ( 𝑛– inner product spaces) [5]  A real-

valued function  ⟨∙,∙ | ∙, … ,∙⟩  on  𝑋𝑛+1  satisfied the 

following properties: 

𝑛I 1:  ⟨𝑥1, 𝑥1|𝑥2, … , 𝑥𝑛⟩  ≥ 0  and  ⟨𝑥1, 𝑥1|𝑥2, … , 𝑥𝑛⟩ = 0,                                                                          

if and only if   𝑥1, 𝑥2 … , 𝑥𝑛  are linearly dependent.    

𝑛 I 2:  ⟨𝑥1, 𝑥1|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑥𝑖1
, 𝑥𝑖1

|𝑥𝑖2
, … , 𝑥𝑖𝑛

⟩ ,  for any 

permutation  (𝑖1, … , 𝑖𝑛) of  (1, … , 𝑛).  

𝑛I 3:  ⟨𝑥1́, 𝑥1|𝑥2, … , 𝑥𝑛⟩ =  ⟨𝑥1, 𝑥1́|𝑥2, … , 𝑥𝑛⟩,                                       

𝑛I 4:  ⟨𝛼𝑥1, 𝑥1|𝑥2, … , 𝑥𝑛⟩ = 𝛼⟨𝑥1, 𝑥1|𝑥2, … , 𝑥𝑛⟩,   for every 

𝛼 ∈ ℝ.    

𝑛 I 5:  ⟨𝑥0 + �́�0, 𝑥1|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑥0, 𝑥1|𝑥2, … , 𝑥𝑛⟩ +

⟨�́�0, 𝑥1|𝑥2, … , 𝑥𝑛⟩.   

is called an  𝑛–inner product  on a vector spaces  𝑋. 

The pair  (𝑋, ⟨∙,∙ | ∙, … ,∙⟩)  is called an  𝑛–inner product 

spaces.    
 

Definition 2.3. (Cauchy-Schwarz inequality) [10,15]  

If⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩is a𝑛–inner product on  𝑋 , then we 

have:                                   

⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩2 ≤ ⟨𝑥, 𝑥|𝑥2, … , 𝑥𝑛⟩⟨𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩,                                                                   
 

 
 
 
 

 

3. Results and discussion 
 

 

Definition 3.1.  Suppose 𝑋 is an 𝑛–inner product spaces, 

for 𝑥, 𝑦, 𝑥2, … , 𝑥𝑛 ∈ 𝑋,  we say that 𝑥, 𝑥2 … , 𝑥𝑛  is 

orthogonal to  𝑦, , 𝑥2, … , 𝑥𝑛  if   ⟨𝑥, 𝑦|𝑥2 … , 𝑥𝑛⟩ = 0.  

Note that, 

⟨𝑥, 𝑦|𝑥2 … , 𝑥𝑛⟩ = 0 if and only if  ⟨𝑦, 𝑥|𝑥2 … , 𝑥𝑛⟩ = 0, by  

𝑛I 3.  So, 𝑥  is orthogonal to 𝑦  if and only  if   𝑦  is 

orthogonal to  𝑥, so we often say simply that  𝑥  and  𝑦 

are orthogonal.  

As an illustration of its use, let`s generalize 

Pythagoras` relation (1.1) and Isosceles relation (1.2) 

by using  𝑛–inner product spaces.   

Theorem 3.1.  Suppose  𝑋 is an  𝑛–inner product spaces 

(𝑋, ⟨∙,∙ | ∙, … ,∙⟩) and  𝑥, 𝑦 ∈ 𝑋  are orthogonal,  then  

 ‖𝑥 + 𝑦, 𝑥2, … , 𝑥𝑛‖2 = ‖ 𝑥, 𝑥2 … , 𝑥𝑛‖2 +

‖𝑦, 𝑥2, … , 𝑥𝑛‖2 = ‖𝑥 − 𝑦, 𝑥2, … , 𝑥𝑛‖2,  

for every  𝑥2, … , 𝑥𝑛 ∈ 𝑋.                                                                                              

Proof.  Since  𝑥 − 𝑦, 𝑥2, … , 𝑥𝑛 = 𝑥 + (−𝑦), 𝑥2, … , 𝑥𝑛 , the 

statement about 𝑥 − 𝑦, 𝑥2, … , 𝑥𝑛 , follows from the 

statement for 𝑥 + 𝑦, 𝑥2, … , 𝑥𝑛 , and  by using   𝑛N 3 we 

get ‖– 𝑦, 𝑥2, … , 𝑥𝑛‖ = ‖𝑦, 𝑥2, … , 𝑥𝑛‖.                                                       

Now, by using equation  𝑛I 5,  

⟨𝑥 + 𝑦, 𝑥 + 𝑦|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑥, 𝑥 + 𝑦|𝑥2, … , 𝑥𝑛⟩ +

⟨𝑦, 𝑥 + 𝑦|𝑥2, … , 𝑥𝑛⟩   

                                     = ⟨𝑥, 𝑥|𝑥2, … , 𝑥𝑛⟩ +

⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩ + ⟨𝑦, 𝑥, |𝑥2, … , 𝑥𝑛⟩ + ⟨𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩ 

 = ⟨𝑥, 𝑥|𝑥2, … , 𝑥𝑛⟩ + ⟨𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩                                    .                                                   

By orthogonality of  𝑥, 𝑥2 … , 𝑥𝑛  , 𝑦, 𝑥2, … , 𝑥𝑛 ,  and by 

the  relation ‖𝑥1, 𝑥2, … , 𝑥𝑛‖2 = ⟨𝑥1, 𝑥1|𝑥2, … , 𝑥𝑛⟩,                               

which mentioned in [6],  proving the result.    

Also, we add  one use of  orthogonality on an 𝑛–inner 

product spaces (𝑋, ⟨∙,∙ | ∙, … ,∙⟩)  as the following:    

Theorem 3.2.  Suppose  𝑥 , 𝑦 ∈ 𝑋 , 𝑦 ≠ 0,  where 𝑋  an 

𝑛– inner product spaces then there exist a unique   

𝑥1 , 𝑥1̀ ∈ 𝑋 such that 

𝑥 = 𝑥1 + 𝑥1̀ ,  𝑥1 = 𝑐𝑦 ,  for some 𝑐 ∈ ℂ,     and     

⟨𝑥1̀, 𝑦|𝑥2, … , 𝑥𝑛⟩ = 0,                                       (3.1)                           

for all  𝑥2, … , 𝑥𝑛 ∈ 𝑋.             

                      

Proof.  If   𝑥 = 𝑥1 + 𝑥1̀  then taking the  𝑛–inner product 

spaces (X, ⟨∙,∙ | ∙, … ,∙⟩)  with  𝑦 and using   𝑥1 = 𝑐𝑦   we 

deduce: 

⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑥1 + 𝑥1̀, 𝑦|𝑥2, … , 𝑥𝑛⟩                                           

                = ⟨𝑥1, 𝑦|𝑥2, … , 𝑥𝑛⟩ + ⟨𝑥1̀, 𝑦|𝑥2, … , 𝑥𝑛⟩, by using 

 𝑛I 5                   

                = ⟨𝑐𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩ + ⟨𝑥1̀, 𝑦|𝑥2, … , 𝑥𝑛⟩                      

                = 𝑐⟨𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩ + 0,   by equation (3.1)                                          

                = 𝑐‖𝑦, 𝑥2, … , 𝑥𝑛‖2,                                                                                   

so  as  𝑦 ≠ 0,   𝑐 =  
⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩

‖𝑦,𝑥2,…,𝑥𝑛‖2  .                                                                                     

Thus, ⟨𝑥1, 𝑦|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑐𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩  and 

⟨𝑥1̀, 𝑦|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑥 − 𝑐𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩,   given a 

uniqueness. 

 

On the other hand, if we let   𝑐 =   
⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩

‖𝑦,𝑥2,…,𝑥𝑛‖2  ,   

⟨𝑥1, 𝑦|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑐𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩                                                            

and      ⟨𝑥1̀, 𝑦|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑥 − 𝑐𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩.  

Then  𝑥 = 𝑥1 + 𝑥1̀  and    𝑥1 = 𝑐𝑦  are satisfied, so we 

merely need to check   ⟨𝑥1̀, 𝑦|𝑥2, … , 𝑥𝑛⟩ = 0.  But    
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⟨𝑥1̀, 𝑦|𝑥2, … , 𝑥𝑛⟩ = ⟨𝑥 − 𝑐𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩  

                           = ⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩ + ⟨−𝑐𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩  

                           = ⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩ − 𝑐⟨𝑦, 𝑦|𝑥2, … , 𝑥𝑛⟩ ,   

by using  𝑛I 4  

= ⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩ −
⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩

‖𝑦,𝑥2,…,𝑥𝑛‖2                              

‖𝑦, 𝑥2, … , 𝑥𝑛‖2 = 0.     

So, the desired vectors  𝑥1  and  𝑥1̀  indeed exist.  

In order to make this a useful tool, we need to be able 

to estimate  the  𝑛– inner product  ⟨∙,∙ | ∙, … ,∙⟩  using  

𝑛–norm ‖∙, … ,∙‖. It is worthy to note that the above 

results will be used to achieve and reprove by the 

Cauchy-Schwarz` inequality which mentioned in 

relation (2.1), as following: 
 

Lemma 3.1.  In an  𝑛– inner product spaces  

(𝑋, ⟨∙,∙ | ∙, … ,∙⟩)  

|⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩| ≤ ‖𝑥, 𝑥2 … , 𝑥𝑛‖‖𝑦, 𝑥2, … , 𝑥𝑛‖   for all  

𝑥, 𝑦, 𝑥2 … , 𝑥𝑛 ∈ 𝑋. 
 

Proof.   If  𝑥 = 0,  then the both sides vanish, so we may 

assume  𝑥 ≠ 0.   

Write: 

𝑥 = 𝑥1 + 𝑥1̀  as  in  Theorem 3.2,  so,   𝑥1 = 𝑐𝑦, 𝑐 = 
⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩

‖𝑦,𝑥2,…,𝑥𝑛‖2  .  

Then by using   

⟨𝑥1, 𝑥1̀|𝑥2 … , 𝑥𝑛⟩ = 𝑐⟨𝑦, 𝑥1̀|𝑥2 … , 𝑥𝑛⟩ = 0,  

‖𝑥, 𝑥2 … , 𝑥𝑛‖2 = ‖𝑥1, 𝑥2 … , 𝑥𝑛‖2 + ‖𝑥1̀, 𝑥2 … , 𝑥𝑛‖2,                                           

                          ≥ ‖𝑥1, 𝑥2 … , 𝑥𝑛‖2                                                                                                    

                         = |𝑐|2‖𝑦, 𝑥2 … , 𝑥𝑛‖2                                                                               

                         =    
|⟨𝑥, 𝑦|𝑥2, … , 𝑥𝑛⟩|

2

‖𝑦,𝑥2…,𝑥𝑛‖2 .                                                                            

multiplying through by ‖𝑦, 𝑥2 … , 𝑥𝑛‖2 and taking the 

non-negative square root completes the proof of the 

Lemma. 
 

Conclusions 

In this work, Cauchy-Schwarz inequality on n-inner 

product spaces is reproved, and notions of 

orthogonality on n-normed spaces are introduced. 

This is the first approach to orthogonality types in 

such spaces. The problem considered in this paper can 

be generalized to a higher dimension involving a 

general formulation of orthogonality relation in real 

normed linear spaces via norm derivatives. 
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